Introduction

- Machine Protection and High Energy Density States in Matter for High Energy Hadron Colliders (PhD thesis started March 2008)
- Studying the consequences of different beam loss scenarios: TCT, connection cryostat, DFBs, busbars, ...
- Simulations of full LHC/SPS beam impact on materials (copper, CFC).
 FLUKA & BIG2 programs.
- Design an experiment to reproduce simulation results (HiRadMat).

Simulations (BIG2 + FLUKA) 150cm x 5cm copper

t[us]

HiRadMat Experiment

- Motivation: Understand the damage potential of LHC beams.
- Actually there is no experimental data to understand it.
- Simulations (FLUKA & BIG2) show a drilling effect of the beam into matter. Ex: LHC beam drills 35m of copper.
- HiRadMat experiment 'will' reproduce simulation results.
- Diamond detector -> monitor density evolution.

Target assembly

HiRadMat Experiment

Diamond detectors. Radiation hard, ns resolution, high dynamic range, simple.

Diamond location

SPS beam, 288 bunches, sigma = 0.1mm

Diamond max signal

веат	
p/bunch	1.15E+11
Nbunch	288
Bunch t	5E-10
Beam t	7.2E-06

D - - --

Cb/e

Diamond	
eh/um	36
um eh/MIP surface	500 18000 0.64
cte	

1.6E-19

Signal	
max at 50cm [A]	
(0.5ns)	7483
max at 70cm [A]	
(0.5ns)	4339

Bounding wire connecting diamond with connector (D=0.01mm copper wire)

0.5 ns at 300 A: heating from 300 K to 338 K 0.5 ns at 400 A: heating from 300 K to 471 K 0.5 ns at 500 A: heating from 300 K to 418 K 0.5 ns at 600 A: heating from 300 K to 483 K

(Arjan Verweij)

Diamond Signal too HIGH for the 0.01mm wire

<u>Not considered:</u> t real signal > 0.5ns Effective thickness ~ 60%

<u>Actions:</u> Lower voltage Less bunches Replace wire/add more wires

Temperature Blocks

with 'tunneling' temperature increase [K] -no 'tunneling'

steady state temperature of each block

Diamond signal 50cm 0.1mm

Diamond signal 70cm 0.1mm

