

Functional imaging and Instrumentation Group – Univ. Pisa

Department of Physics "E.Fermi" University of Pisa

INFN - Pisa

Boston, October 18, 2007 Harvard Medical School

PET applications in small animal imaging, breast cancer imaging and proton therapy

Alberto Del Guerra

Professor of Medical Physics Head and Director Specialty School in Medical Physics Head, <u>Functional Imaging and</u> <u>Instrumentation Group</u>

Department of Physics "E.Fermi", University of Pisa and INFN, Pisa (Italy)

1

FIIG	PET scintillators								
Photon detection in Functional Imaging Small Animal Imaging:PET&CT	Photo-detectors are usually coupled to scintillators: the most often used was BGO (Bismuth germanate, Bi ₄ Ge ₃ O ₁₂) and more recently is LSO (Lutetium Oxi-orto Silicate).								
Breast cancer Imaging	Material	Density [g/cm³]	Atomic numbers	Light yield [%Nal(Tl)]	Decay time [ns]	Peak wavelength [nm]	Time resolution [ns]	Index of refraction	Comments
PET&SPECT	Nal(TI)	3.76	11,53	100	230	410	1.5	1.85	Hygroscopic Low density
"In vivo" PET dosimetry for hadron therapy	BGO	7.13	83,32,8	15	300	480	7	2.15	Low light yield Slow
New	LSO	7.4	71,32,8	75	40	480	1.4	1.82	Intr. background 400 cps/cm ³
SiPM	GSO	6.71	64,32,8	26	600	430	-	1.85	Low light yield Slow
Conclusions	CsI(TI)	4.51	55,53	45	1000	565	-	1.80	Slow
Acknowledgments	YAP:Ce	5.37	39,13,8	55	27	370	1.1	1.95	Medium Z
	2								
	Alberto Del Guerra e-mail: alberto.delguerra@df.unipi.it								

PSPMT choice

Photon detection in Functional Imaging

Small Animal Imaging:PET&CT

> Breast cancer Imaging PET&SPECT

"In vivo" PET dosimetry for hadron therapy

New photodetectors: SiPM

Conclusions

Acknowledgments

Readout architecture

Photon detection in Functional Imaging

Small Animal Imaging:PET&CT

> Breast cancer Imaging PET&SPECT

"In vivo" PET dosimetry for hadron therapy

New photodetectors: SiPM

Conclusions

Acknowledgments

>> PC connect.: 2 × USB 2.0

5

Phantom Irradiation & Imaging

Photon detection in Functional Imaging

Small Animal Imaging:PET&CT

Breast cancer Imaging PET&SPECT

"In vivo" PET dosimetry for hadron therapy

New photodetectors: SiPM

Conclusions

Acknowledgments

- Homogeneous cylindrical and eye phantoms of PMMA were irradiate with monoenergetic and SOBPs;
- Distance between heads: 14 cm;

- Dose delivered: 15–30 Gy within 60–240 s;
- Proton beam intensity: $\sim 10^8 \text{ s}^{-1}$;
- Final collimator: 25 mm Ø;
- PET acquisition time: 10–30 min;
- ML-EM for imaging in 3D. $_{7}$

The Feasibility of PET for Range Monitoring

Photon detection in Functional Imaging

Small Animal Imaging:PET&CT

Breast cancer Imaging PET&SPECT

"In vivo" PET dosimetry for hadron therapy

New photodetectors: SiPM

Conclusions

Acknowledgments

• In the ideal case of homogeneous targets we can resolve fairly well range differences of less than 2 mm.

Longitudinal *dose* profiles from irradiation using different range shifters and 12 mm modulator.

Longitudinal profiles of the measured *activity* integrated over the central slice of the PET reconstructed image.

<u>Si</u>licon <u>PhotoMultiplier</u> = SiPM Working principle

Results: energy resolution ($\Delta E/E$)

Photon detection in Functional Imaging

Small Animal Imaging:PET&CT

> Breast cancer Imaging PET&SPECT

"In vivo" PET dosimetry for hadron therapy

New photodetectors: SiPM

Conclusions

Acknowledgments

- Setup:
 - 2 LSO [1mm x 1mm x 10mm] crystals coupled to 2 SiPMs
 - Home made amplifier board.
 - Time coincidence of signals.
 - VME QDC for DAQ.
 - ²²Na source.
- Energy resolution in coincidence: **20% FWHM**. (best result: 17.5 %)

[G.Llosa et al, Conference Records IEEE NSS-MIC 2006, M06-88]

11

Results: coincidence timing (TOF)

Photon detection in Functional Imaging

•

Small Animal Imaging:PET&CT •

> Breast cancer Imaging PET&SPECT

"In vivo" PET dosimetry for hadron therapy

New photodetectors: SiPM

Conclusions

Acknowledgments

Coincidence measurement with **two LSO** crystals (1x1x10 mm³) coupled to two SiPMs

Theory: Post and Schiff. Phys. Rev. 80 (19501113.

Where:

<N> = average number of photons: ~ 100 photons at the photopeak Q = Trigger level: ~1 photoelectron. τ = Decay time of the scintillator

For two scintillators in coincidence expected : => $\sqrt{2\sigma}$ ~ 630 ps . Measured => ~ 600 ps sigma.

Measurements in agreement with what we expect!!

[G.Llosa, et al. to be presented at IEEE, NSS-MIC 2007, Honolulu, USA] 12

Alberto Del Guerra

e-mail: alberto.delguerra@df.unipi.it