Charm physics at LHCb: triggering and selection

Patrick Spradlin

University of Oxford Particle Physics

Annual conference of the High Energy Particle Physics (HEPP) group of the Institute of Physics (IOP) Oxford, UK 06-08 April 2009

Patrick Spradlin (Oxford)

Charm physics at LHCb: triggering and select

A D N A B N A B N A B

Outline

- LHCb detector LHC
 - LHCb

Charm physics

Sources of charm

The LHCb trigger 3

- Trigger structure
- Charm trigger uses

Charm selection

- D^0 tagging
- Creation vertex
- Selection yields

< A

Large Hadron Collider

IOP HEPP 2009.04.06

→ E ► < E ►</p>

ALICE LEP/LHC

Point 2

DQC 3/18

LHCb

LHCb detector

LHCb

LHCb features

- The features that make LHCb excellent for B physics also make it a good charm physics experiment
- High event rate
- Excellent vertexing and proper time resolution: \sim 45 fs for secondary D^0
- Good tracking and momentum resolution: $\sim 7 \,\mathrm{MeV} \,D^0$ mass
- Excellent $K \pi$ discrimination

The 14 Th

Charm physics w/hadronic final states: CPV

CP violation in *D* decays

- Currently unobserved
- SM predictions very small,
 - $\mathcal{O}(10^{-3})$ for singly Cabibbo suppressed (SCS) (e.g. $D^0 \rightarrow K^-K^+$),
 - Negligibly small for Cabibbo favored (CF) and doubly suppressed (DCS).
 - Measurements in many decay modes,
 - Relative decay rates,
 - Final state distributions (e.g. Dalitz space) in multibody decays,
 - CP violation in mixing.
 - Individual experimental upper limits \sim 0.5%.

∃ ► 4 ∃ ►

Charm physics w/hadronic final states: mixing

$D^0 - \overline{D^0}$ mixing

- Recent strong evidence of mixing,
 - Three independent 3σ measurements.
- Observed level consistent with standard model,
 - SM mixing very small: $\mathcal{O}(10^{-3})$,
 - Useful constraints on new physics models.
- CP violation in mixing.

3 1 4 3

Sources of charm

Two sources of charm

Prompt production

- + Prolific production
- + Strong potential on early data
- 0 Less efficient in trigger
- Potentially larger backgrounds
- Unavoidable significant proper time acceptance effects

+ CDF proved that measurements are possible in hadronic environment

Patrick Spradlin (Oxford)

Charm physics at LHCb: triggering and select

B decays $(B \rightarrow D^{(*)}X)$

- + Strongly favored by LHCb triggers
- + Potentially less background
 - New techniques need to be developed—no published measurements

프 🖌 🖌 프

IOP HEPP 2009.04.06

8/18

LHCb trigger

Two stage trigger:

- 40 MHz crossing rate at nominal design luminosity.
- L0 hardware trigger high *p*_t particles,
 - Subset of detector information,
 - Fast decision,
 - 1 MHz output rate.
- High Level Trigger (HLT) in software physics signatures
 - Software trigger running in event farm,
 - All detector information available,
 - Multiple layers with increasing levels of decision complexity.
- $\sim 2 \, \text{kHz}$ output rate.

・ ロ ト ・ 同 ト ・ 回 ト

L0 trigger

- Identify single particle b-hadron decay products,
 - Final state particles

 (π, K, e, γ, μ) with significant p_t,
 - Threshold *p*_t values of a few GeV,
 - Sets of thresholds optimized for physics goals.
- 40 MHz input \rightarrow 1 MHz output

High Level Trigger stage 1 (HLT1)

- First stage of software trigger,
- Identify 1 and 2 final state particle signatures,
- Parallel trigger paths for various final state particles.
- Fast identification of simple B event features.

- High p_t particles (hadrons, muons, electrons, and photons),
- Charged tracks with sizable impact parameter with respect to primary interaction vertex (PV),
- Products of prompt D have smaller mean p_t than those of secondary D.

THE 1 A

High Level Trigger stage 2 (HLT2)

- Require events pass HLT1,
- Reduced input rate allows compute-intensive reconstruction,
- Complete final state reconstruction,
- Channels for specific topologies,
 - Inclusive selections of related groups of decays,
 - Exclusive decay chain, e.g., $D^{*+} \rightarrow \pi_s^+ D^0(h^- h^+)$
 - Channels can also be layered with increasing precision of parameter estimates.
 - 2 kHz total output rate

doca p₁ p₂ p₂ p₃ p₄ The LHCb trigger

Charm trigger uses

Uses of LHCb *D*^{*+} trigger

 D^0 tagging

+ tagging

- CP violation and mixing studies with D^0 requires 'tagging' as D^0 or $\overline{D^0}$,
- Same-side tag for D⁰ flavor,
- Reconstruct $D^*(2010)^+ \rightarrow D^0 \pi_s^+ + \text{ c.c.},$
 - Strong decay, instantaneous,
 - 'Slow' pion, π_s^{\pm} , charge identifies D^0 or $\overline{D^0}$
- Tightly constrained phase space,
 - $m_{D^{*+}} m_{D^0} \equiv \Delta m =$ $145.421 \pm 0.010 \, \text{MeV},$
- Very narrow peak in Δm ,
 - Clear signal/background discriminant.

Vertex resolution for mixing

Decay vertex resolutions

	D^0	D^{*+}		
x	21.6 μm	187 . μm		
y	16.9 μm	144 . μm		
Ζ	257 . µm	4232 . µm		
au	0.46	0.465 ps		

Signal MC lab frame angles

- D*+ vertex poorly estimated,
- D^0 and π_s^+ almost collinear,
- Add tracks at birth vertex.

Charm selection Creation vertex

Birth vertex improvement for secondary charm

- Use additional tracks at production vertex,
- For prompt charm: use PV,
- For *D*⁰ from *B*: use 1 additional track from parent *B*.

Decay vertex resolutions

	D^0	D*+	B_{part}
X	21.6 µm	187. μm	18.1 μm
y	16.9 μm	144 . μm	18.4 $\mu \mathrm{m}$
Ζ	257 . μm	4232 . µm	237 . µm

Improved proper time resolution $= 0.045 \, \mathrm{ps}$

Patrick Spradlin (Oxford)

Charm physics at LHCb: triggering and select

Selection yields

Estimated selection yields for two body hadronic channels

- $D^{*+}
 ightarrow \pi_{
 m s} D^{
 m 0}, \ D^{
 m 0}
 ightarrow hh'$
 - $h, h' \in \{K^{\pm}, \pi^{\pm}\}$
- Tagged selections,
 - CP violation measurements,
 - Time-dependent mixing measurements.
- Yield estimates include trigger.

Estimated selection yields in $2 \, \mathrm{fb}^{-1}$

	$D^0 \rightarrow$	$\star K^-\pi^+$	$\rightarrow K^-K^+$	$\rightarrow \pi^{-}\pi^{+}$		
Prompt signal yield (×10 ⁶)	1(09 ± 12	10 ± 3	2 ± 1		
S/B		8	6	> 2		
Secondary signal yield (×	0 ⁶) [†] 12.38	±0.59	$\textbf{1.32}\pm\textbf{0.19}$	0.50 ± 0.12		
S/B		5	5	3		
See Philip Xing's talk for physics estimates with this selections						
				■▶ ▲ ■ ◆ ● ◆ ●		
Patrick Spradlin (Oxford) Ct	arm physics at LHCb:	triggering and	select IOP HER	PP 2009 04 06 17 / 1		

Summary

- First collisions at LHC are imminent,
- LHCb will record unprecedented numbers of charm events,
- Efforts are underway to exploit both prompt and secondary sources for charm physics analyses,
- See talk by Philip Xing in this session for estimates of physics performance.

イモトイモト