

$B \rightarrow K^* \mu^+ \mu^-$: SM and Beyond

Aoife Bharucha with W. Altmannshofer, Patricia Ball, A.J. Buras, D. Straub and M. Wick (arXiv:0811.1214 [hep-ph])

IPPP/TU Munich

IoP HEPP 2009, 6th April

Soon Launching Expedition to 14TeV

Soon Launching Expedition to 14TeV

Some Structure

- Angular Observables via B Physics Tool Box
- Prospects at LHCb
- Categorising the NP contribution
- Some Concrete Examples-Distinguishing Features

Angular Observables

..where $I(q^2, \theta_l, \theta_K, \phi) = \sum_{i=1}^9 I_i^{(s/c)}(q^2) \, \omega_i(\theta_l, \theta_K, \phi)$

Emphasize CP Conserving Effects

$$S_i^{(a)} = \frac{I_i^{(a)} + \bar{I}_i^{(a)}}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2}$$

Aoife Bharucha (IPPP/TU Munich)

Emphasize CP Violating Effects¹

$$A_i^{(a)} = \frac{I_i^{(a)} - \bar{I}_i^{(a)}}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2}$$

¹Also considered in C. Bobeth, G. Hiller and G. Piranishvili arXiv:0805.2525

,2009 6/3

) / 14

Prospects at LHCb

Developing EvtGen Model (See Will Reece's talk)
Focus on near future possibilities: S₃, S₅, S₆, A₇, A₉

Relating Observables to NP: EFTs

- Disentangle physics governed by different mass scales
- Write \mathcal{L} in terms of 'Effective Operators' and Effective Coupling Constants known as 'Wilson Coefficients'

$$\mathcal{L} = \sum_{i} C_i O_i$$

For $B \to K^*(\to K^-\pi^+)\mu^+\mu^-$, important Operators are.. Electromagnetic Dipole O_7 Vector/Axial Current $O_{9(10)}$

Relating Observables to NP: EFTs

- Disentangle physics governed by different mass scales
- Write \mathcal{L} in terms of 'Effective Operators' and Effective Coupling Constants known as 'Wilson Coefficients'

$$\mathcal{L} = \sum_{i} C_i O_i$$

For $B \to K^*(\to K^-\pi^+)\mu^+\mu^-$, important NP O's are.. Spin-Flipped EM Dipole O'_7 Scalar/Pseudoscalar $O_{S(P)}$

What will the Flavour Telescope see?

Focus on Additional..

- Operators eg. Scalar
- CP Violation

Keeping in Mind Bounds from..

- $B_s \to \mu^+ \mu^-$, $B \to X_s \gamma$, $B \to X_s \mu^+ \mu^-$
- EDM's, CP Asymmetries....

Aoife Bharucha (IPPP/TU Munich)

What will the Flavour Telescope see?

Focus on Additional..

- Operators eg. Scalar
- CP Violation

Keeping in Mind Bounds from..

- $B_s \to \mu^+ \mu^-$, $B \to X_s \gamma$, $B \to X_s \mu^+ \mu^-$
- EDM's, CP Asymmetries....

New Physics via Wilson Coefficients

Model	Additional Operators	CP/Flavo Violation	our
MFV MSSM	O_S, O_P	No	
Flavour Blind	O_S, O_P	Yes/No	
MSSM			
General	O_S, O_P, O_7'	Yes	
MSSM			

MFV

- Effects for CMFV at most 50%
- Correlate zeros of S_4 , S_5 , S_6^s with $B(b \rightarrow s\gamma)$

Flavour-Blind MSSM

- Bound on C_7 from $b \rightarrow s\gamma$ weakened if complex FBMSSM has additional CP violating phases..
- Correlate zeros of S_4 , S_5 , S_6^s with $B(b \rightarrow s\gamma)$

Flavour-Blind MSSM

Aoife Bharucha (IPPP/TU Munich)

General MSSM

- Large no. of free parameters \Rightarrow Concentrate on complex C'_7
- Generate C'_7 via down squark gluino loops
- Sizeable effects in $S_{4/5/6}^{(i)}, A_{7/8}$, and uniquely in S_3/A_9

• $B\to \bar{K}^*\mu^+\mu^-$ will provide a multitude of sensitive observables at the LHC

Visible effects at the LHC: LHCb, ATLAS, CMS
 Full Angular Distribution will be measured, deviations from SM will be seen

Aoife Bharucha (IPPP/TU Munich)

Summary

$\bullet~B\to \bar{K}^*\mu^+\mu^-$ will provide a multitude of sensitive observables at the LHC

Visible effects at the LHC: LHCb, ATLAS, CMS
 Full Angular Distribution will be measured, deviations from SM will be seen

Summary

• $B\to \bar K^*\mu^+\mu^-$ will provide a multitude of sensitive observables at the LHC

• Visible effects at the LHC: LHCb, ATLAS, CMS Full Angular Distribution will be measured, deviations from SM will be seen