

10P HEPP 2009

Supersymmetry Searches in Trilepton Final States with the ATLAS Detector

at the LHC, CERN

Oleg Brandt, 3rd year

3^{ra} year (Univ. of Oxford)

Today's Menu

- The Large Hadron Collider (LHC)
- ATLAS
- Introduction:
 - Why trilepton final states?
- The trilepton search:
 - Main backgrounds
 - Selection
 - Results:
 - Discovery reach of ATLAS
 - Systematics
 - Trigger strategy
 - Measuring the rate of leptons from heavy flavour decays
- Summary
- Outlook

Unique window to Beyond The Standard Model (BSM) Physics at the Terascale!

Sensitivity to BSM with *O*(10 pb⁻¹) of (understood) data similar to the full Tevatron dataset!

Injection at 450 GeV / beam

Year 1:

~ 10 TeV, L = 10^{31-32} cm⁻² s⁻¹ 10 - 100 pb⁻¹

Designed for:

14 TeV, L = 10^{34} cm⁻² s⁻¹ 10 – 100 fb⁻¹ / year

The Large Hadron Collider (LHC) at CERN

The ATLAS Experiment

Mast head: 2604 scientists!

ATLAS (Slightly More Technical)

(the 2nd and 3rd year of my Ph.D.)

- ATLAS took cosmics between Sept. and Dec. 2008 (M8+)
- High-quality first-pass alignment with cosmic data:

Alignment of the ATLAS Silicon Tracker

(the 2nd and 3rd year of my Ph.D.)

- ATLAS took cosmics between Sept. and Dec. 2008 (M8+)
- High-quality first-pass alignment with cosmic data:

However, a lot of work still needs to be done!

Why Trilepton Final States?

Is It a No-Lose BSM Search?

Why Trilepton Final States? (II)

Is It a No-Lose BSM Search?

Origin of mass?

- At the moment, the Higgs mechanism is widely accepted
- If no Higgs:
 - Diboson scattering X-section must increase dramatically!
 - At ~1 TeV (unitarity conservation)

Why Trilepton Final States? (II)

Is It a No-Lose BSM Search?

Origin of mass?

- At the moment, the Higgs mechanism is widely accepted
- If no Higgs:
 - Diboson scattering X-section must increase dramatically!
 - At ~1 TeV (unitarity conservation) q $Z^{2}V^{\pm}V^{Z}$ $W^{\pm}V^{2}W^{\pm}$
 - Tri-lepton + missing E_T final states ideal (WZ production):
 - Discovery mode at the Tevatron!
 - (did not look explicitely into it)
 - Due to high boost of WZ, I + 2j is an interesting signature, too

Why Trilepton Final States? (III)

Is It a No-Lose BSM Search?

- Origin of Dark Matter?
 - If there is a Higgs:
 - Hierarchy problem (non-cancelling virtual loop corrections)
 - Fine tuning at 10⁻³² level!

Why Trilepton Final States? (III)

Is It a No-Lose BSM Search?

ATLAS

- *Origin of Dark Matter?
 - If there is a Higgs:
 - Hierarchy problem (non-cancelling virtual loop corrections)
 - Fine tuning at 10⁻³² level!
 - (minimal) Supersymmetry (SUSY): one superpartner!
 - Loops cancel elegantly!
 - Lightest Supersymmetric Particle (LSP): Dark Matter!
 - R-parity conserving models
 - Minimal Supergravity (mSUGRA)
 - 5 parameters

TOOL MILE NIT ME

Why Trilepton Final States? (III)

Is It a No-Lose BSM Search?

ATLAS

- Origin of Dark Matter?
 - If there is a Higgs:
 - Hierarchy problem (non-cancelling virtual loop corrections)
 - Fine tuning at 10⁻³² level!
 - (minimal) Supersymmetry (SUSY): one superpartner!
 - Loops cancel elegantly!
 - Lightest Supersymmetric Particle (LSP): Dark Matter!
 - R-parity conserving models
 - Minimal Supergravity (mSUGRA
 - 5 parameters
 - Trilepton + missing E_T
 - Important SUSY window!
 - Especially if strong sparticle production suppressed:
 - Not necessarily the case in mSUGRA type of models at ATLAS
 - Don't only look under the lamppost!

- Trigger level:
 - Lepton rates intrinsically much smaller₁₀7
- Offline analysis level:
 - Significantly less data to plow through

Why Are Leptonic Final States Interesting for BSM Searches?

- Leptons can be used to reject QCD junk at the LHC:
 - Trigger level:
 - Lepton rates intrinsically much smaller₁₀7
 - Offline analysis level:
 - Significantly less data to plow through
- Leptons are "easier":
 - Efficiencies are easier to understand
 - Smaller uncertainties (e.g. no JES)
 - Can afford to cut on lower missing E_T

Why Are Leptonic Final States Interesting for BSM Searches?

- Trigger level:
 - Lepton rates intrinsically much smaller₁₀7
- Offline analysis level:
 - Significantly less data to plow through
- Leptons are "easier":
 - Efficiencies are easier to understand
 - Smaller uncertainties (e.g. no JES)
 - Can afford to cut on lower missing E_T°
- Once BSM discovered use leptons to: 10²
 - Identify model (SUSY, UED, ...)
 - Measure particle spectrum

Why Are Leptonic Final States Interesting for BSM Searches?

- Leptons can be used to reject QCD junk at the LHC:
 - Trigger level:
 - Lepton rates intrinsically much smaller₁₀7
 - Offline analysis level:
 - Significantly less data to plow through
- Leptons are "easier":
 - Efficiencies are easier to understand
 - Smaller uncertainties (e.g. no JES)
 - Can afford to cut on lower missing E_T°
- Once BSM discovered use leptons to: 10²
 - Identify model (SUSY, UED, ...)
 - Measure particle spectrum
- However:
 - Typically smaller X-sections
 - Track / calo isolation to reject leptons from heavy flavour!

In the context of SUSY, we *primarily* search for associated chargino-neutralino pair-production:

Trilepton + Missing E_T Signal

ATLAS

In the context of SUSY, we *primarily* search for associated chargino-neutralino pair-production:

Trilepton + Missing E_T Signal

In the context of SUSY, we *primarily* search for associated chargino-neutralino pair-production:

Trilepton + Missing E_T Signal

Optimise the trilepton + missing E_T search for the most difficult scenario:

Models with low hadronic X-sections: e.g. models with high O(3 TeV) strong interacting sparticle masses, e.g. in the "focus point" region SU2:

$$m_0 = 3550 \text{ GeV}, m_{1/2} = 300 \text{ GeV},$$

 $A_0 = 0, \tan \beta = 10, \mu > 0.$

- Also sensitive to many other BSM models!
 - In SUSY context:
 - Long decay chains typical for the "bulk" region

Trilepton + Missing E_T : Backgrounds

ATLAS

- Backgrounds with >= 3 prompt leptons:
 - WZ, ZZ:
 - Relatively high lepton p_T , genuine missing E_T for WZ
 - X-section only O(10) higher than SUSY

Process	σ [pb]	k factor	$\langle w \rangle$	$\int dt \mathcal{L} [fb^{-1}]$
WW	24.5	1.67	1	1.22
WZ	7.8	2.05	1	2.98
ZZ	2.1	1.88	1	12.7
$Z\gamma$	2.6	1.30	1	2.98
Zb	154	1	0.66	0.75
$t\bar{t}$	450	-	0.73	0.92

ATLAS

- Backgrounds with >= 3 prompt leptons:
 - WZ, ZZ:
 - Relatively high lepton p_T , genuine missing E_T for WZ
 - X-section only O(10) higher than SUSY

Process	σ [pb]	k factor	$\langle w \rangle$	$\int dt \mathcal{L} [fb^{-1}]$
WW	24.5	1.67	1	1.22
WZ	7.8	2.05	1	2.98
ZZ	2.1	1.88	1	12.7
Ζγ	2.6	1.30	1	2.98
Zb	154	1	0.66	0.75
$t\bar{t}$	450	-	0.73	0.92

Trilepton + Missing E_{τ} : Backgrounds

- Backgrounds with >= 3 prompt leptons:
 - *WZ, ZZ*:
 - Relatively high lepton p_T , genuine missing E_T for WZ
 - X-section only O(10) higher than SUSY
- **Backgrounds with <= 2 prompt leptons:**
 - WW:
 - Extra jet to fake an e
 - \mathbf{Z}_{γ} :
 - Photon to fake an e
 - Zb, tt, (Zc):
 - Additional lepton from b-decay
 - But: very high X-section

Process	σ [pb]	k factor	$\langle w \rangle$	$\int dt \mathcal{L} [fb^{-1}]$
WW	24.5	1.67	1	1.22
WZ	7.8	2.05	1	2.98
ZZ	2.1	1.88	1	12.7
Ζγ	2.6	1.30	1	2.98
Zb	154	1	0.66	0.75
$t\bar{t}$	450	-	0.73	0.92

Trilepton + Missing E_T : Backgrounds

ATLAS

- Backgrounds with >= 3 prompt leptons:
 - WZ, ZZ:
 - Relatively high lepton p_T , genuine missing E_T for WZ
 - X-section only O(10) higher than SUSY
- Backgrounds with <= 2 prompt leptons:</p>
 - WW:
 - Extra jet to fake an e
 - Zγ:
 - Photon to fake an e
 - Zb, tt, (Zc):
 - Additional lepton from b-decay
 - But: very highX-section

Process	σ [pb]	k factor	$\langle w \rangle$	$\int dt \mathcal{L} [fb^{-1}]$
WW	24.5	1.67	1	1.22
WZ	7.8	2.05	1	2.98
ZZ	2.1	1.88	1	12.7
Ζγ	2.6	1.30	1	2.98
Zb	154	1	0.66	0.75
$t\bar{t}$	450	-	0.73	0.92

Trilepton + Missing E_T : Selection

Cuts:

- Lepton preselection: p_T > 10 GeV, |η| > 2.5
- At least one lepton pair
- At least one OSSF pair with $20 \text{ GeV} < M_{OSSF}$
- 3^{rd} lepton (highest p_T)
- **Track isolation:**
 - e: $p_{T\, {
 m track.max}}^{\Delta R=0.2} < 2 {
 m ~GeV}$ μ : $p_{T\, {
 m track,max}}^{\Delta R=0.2} < 1 {
 m ~GeV}$
- No OSSF pair with:

$$81.2 \text{ GeV} < M_{OSSF} < 102.2 \text{ GeV}$$

- $E_{\rm T}^{\rm miss} > 30~{\rm GeV}$
- Optional:
 - no jet with $p_{\rm T} > 20~{\rm GeV}$

Trilepton + Missing E_T : Selection

Cuts:

- Lepton preselection: $p_T > 10 \text{ GeV}$, $|\eta| > 2.5$
- At least one lepton pair
- At least one OSSF pair with $20 \text{ GeV} < M_{OSSF}$
- 3^{rd} lepton (highest p_T)
- **Track isolation:**

 - e: $p_{T\, {
 m track.max}}^{\Delta R=0.2} < 2 {
 m ~GeV}$ μ : $p_{T\, {
 m track,max}}^{\Delta R=0.2} < 1 {
 m ~GeV}$
- No OSSF pair with:

 $81.2 \text{ GeV} < M_{OSSF} < 102.2 \text{ GeV}^{3}$

- $E_{\rm T}^{\rm miss} > 30~{\rm GeV}$
- Optional:
 - no jet with $p_{\rm T} > 20~{\rm GeV}$

after this cut

M_{II} (after 3rd lepton requirement) [GeV]

Track and Calorimeter Isolation

ATLAS

- After requirement of a 3rd lepton:
 - a lot of background from leptons from heavy quark decays in $t\bar{t}$, Zb
 - Expect additional activity around such leptons

Use track and calorimeter isolation to discriminate!

$$I_{0,2}^{\text{trk}}(\ell) \equiv \max_{i,j} \{ p_T^{\text{track}_i} | \text{track}_i \in \Delta R(\ell_j) \} \text{ where } \ell = \mu, e$$

Track and Calorimeter Isolation

- a lot of background from leptons from heavy quark decays in $t\bar{t}$, Zb
- Expect additional activity around such leptons
- Use track and calorimeter isolation to discriminate!

Track and Calorimeter Isolation

- a lot of background from leptons from heavy quark decays in $t\bar{t}$, Zb
- Expect additional activity around such leptons
- Use track and calorimeter isolation to discriminate!

Statistical significance improves almost by O(10)!

Trilepton + Missing E_{τ} : Selection (II)

After the missing E_T cut:

Trilepton Search: Reach (10 fb⁻¹)

Cut flow table:

Kinematic Cut	No Cuts	$N_L >= 2$	OSSF	$N_L >= 3$	TrackIsol	$m_{\ell\ell}$	$E_{ m T}^{ m miss}$	JetVeto
SU2 gauginos	64.0k	1647	1108	178	153	120	95	29
SU2 other	7081	776	353	127	95	85	82	0
$t\overline{t}$	4.41M	234k	104k	2812	634	507	476	42
ZZ	38.2k	10.4k	9984	580	476	57	13	6
ZW	156k	17.2k	14.5k	1910	1682	322	218	154
WW	400k	22.7k	10.7k	25	8	8	8	8
Ζγ	32.8k	7184	6970	91	27	7	3	0
Zb	1.59M	57.4k	559k	6523	2409	386	0	0
inclusive SUSY &		2.60	1.74	2.76	3.36	5.31	5.94	1.87
direct gaugino S		1.77	1.32	1.61	2.09	3.20	3.34	1.87

Trilepton Search: Reach (10 fb⁻¹)

Cut flow table:

Kinematic Cut	No Cuts	$N_L >= 2$	OSSF	$N_L >= 3$	TrackIsol	$m_{\ell\ell}$	$E_{ m T}^{ m miss}$	JetVeto
SU2 gauginos	64.0k	1647	1108	178	153	120	95	29
SU2 other	7081	776	353	127	95	85	82	0
t₹	4.41M	234k	104k	2812	634	507	476	42
ZZ	38.2k	10.4k	9984	580	476	57	13	6
ZW	156k	17.2k	14.5k	1910	1682	322	218	154
WW	400k	22.7k	10.7k	25	8	8	8	8
Ζγ	32.8k	7184	6970	91	27	7	3	0
Zb	1.59M	57.4k	559k	6523	2409	386	0	0
inclusive SUSY &		2.60	1.74	2.76	3.36	5.31	5.94	1.87
direct gaugino S		1.77	1.32	1.61	2.09	3.20	3.34	1.87

$$\mathscr{S} = \frac{S}{\sqrt{S+B}}$$

Cut flow table:

Kinematic Cut	No Cuts	$N_L >= 2$	OSSF	$N_L >= 3$	TrackIsol	$m_{\ell\ell}$	$E_{ m T}^{ m miss}$	JetVeto
SU2 gauginos	64.0k	1647	1108	178	153	120	95	29
SU2 other	7081	776	353	127	95	85	82	0
$t\overline{t}$	4.41M	234k	104k	2812	634	507	476	42
ZZ	38.2k	10.4k	9984	580	476	57	13	6
ZW	156k	17.2k	14.5k	1910	1682	322	218	154
WW	400k	22.7k	10.7k	25	8	8	8	8
Ζγ	32.8k	7184	6970	91	27	7	3	0
Zb	1.59M	57.4k	559k	6523	2409	386	0	0
inclusive SUSY &		2.60	1.74	2.76	3.36	5.31	5.94	1.87
direct gaugino S		1.77	1.32	1.61	2.09	3.20	3.34	1.87

Expect 5σ with $\sim 80 \text{ fb}^{-1}$ (stat. only)

Trilepton Search: Reach (10 fb⁻¹)

Cut flow table:

Kinematic Cut	No Cuts	$N_L > = 2$	OSSF	$N_L > = 3$	TrackIsol	$m_{\ell\ell}$	$E_{ m T}^{ m miss}$	JetVeto
SU2 gauginos	64.0k	1647	1108	178	153	120	95	29
SU2 other	7081	776	353	127	95	85	82	0
$t\overline{t}$	4.41M	234k	104k	2812	634	507	476	42
ZZ	38.2k	10.4k	9984	580	476	57	13	6
ZW	156k	17.2k	14.5k	1910	1682	322	218	154
WW	400k	22.7k	10.7k	25	8	8	8	8
Ζγ	32.8k	7184	6970	91	27	7	3	0
Zb	1.59M	57.4k	559k	6523	2409	386	0	0
inclusive SUSY &	9	2.60	1.74	2.76	3.36	5.31	5.94	1.87
direct gaugino S		1.77	1.32	1.61	2.09	3.20	3.34	1.87

Discovery with 10 fb⁻¹ possible!

Trilepton Search: Reach (10 fb⁻¹)

Cut flow table:

Kinematic Cut	No Cuts	$N_L >= 2$	OSSF	$N_L >= 3$	TrackIsol	$m_{\ell\ell}$	$E_{ m T}^{ m miss}$	JetVeto
SU2 gauginos	64.0k	1647	1108	178	153	120	95	29
SU2 other	7081	776	353	127	95	85	82	0
$t\bar{t}$	4.41M	234k	104k	2812	634	507	476	42
ZZ	38.2k	10.4k	9984	580	476	57	13	6
ZW	156k	17.2k	14.5k	1910	1682	322	218	154
WW	400k	22.7k	10.7k	25	8	8	8	8
Ζγ	32.8k	7184	6970	91	27	7	3	0
Zb	1.59M	57.4k	559k	6523	2409	386	0	0
inclusive SUSY &		2.60	1.74	2.76	3.36	5.31	5.94	1.87
direct gaugino S		1.77	1.32	1.61	2.09	3.20	3.34	1.87

Direct gaugino production more challenging

Trilepton Search: Reach (10 fb⁻¹)

Cut flow table:

Kinematic Cut	No Cuts	$N_L >= 2$	OSSF	$N_L >= 3$	TrackIsol	$m_{\ell\ell}$	$E_{ m T}^{ m miss}$	JetVeto
SU2 gauginos	64.0k	1647	1108	178	153	120	95	29
SU2 other	7081	776	353	127	95	85	82	0
$t\overline{t}$	4.41M	234k	104k	2812	634	507	476	42
ZZ	38.2k	10.4k	9984	580	476	57	13	6
ZW	156k	17.2k	14.5k	1910	1682	322	218	154
WW	400k	22.7k	10.7k	25	8	8	8	8
Ζγ	32.8k	7184	6970	91	27	7	3	0
Zb	1.59M	57.4k	559k	6523	2409	386	0	0
inclusive SUSY &		2.60	1.74	2.76	3.36	5.31	5.94	1.87
direct gaugino S		1.77	1.32	1.61	2.09	3.20	3.34	1.87

Search equally sensitive to other benchmark points:

	SU1	SU2	SU3	SU4	SU8
\mathcal{S} , 10 fb ⁻¹	7.7	5.9	17.2	69.3	1.9
$\int dt \mathcal{L} $ for 5σ	4.2	7.1	0.8	0.1	70.5

[arXiv:0901.0512]

ATLAS

- 3 leptons in the final state:
 - Can easily use lepton triggers!
- Identified optimal triggers for
 - Isolated electron (L2_e22i): $p_T^{e,\,
 m iso} > 25\,{
 m GeV}$
 - Isolated muon (L2_mu20): $p_T^{\mu,\,\mathrm{iso}} > 20\,\mathrm{GeV}$

Selection		SU2χ			SU3χ			SU3 incl.	
Stage	L2_e22i	L2_mu20	U	L2_e22i	L2_mu20	U	L2_e22i	L2_mu20	U
OSSF pair	41%	54%	89%	42%	54%	92%	51%	51%	94%
OSSF+ $3^{rd}\ell$	58%	67%	93%	59%	63%	95%	66%	68%	98%
after all cuts	57%	66%	92%	58%	57%	94%	66%	64%	97%

[arXiv:0901.0512]

ATLAS

- 3 leptons in the final state:
 - Can easily use lepton triggers!
- Identified optimal triggers for
 - Isolated electron (L2_e22i): $p_T^{e,\,\mathrm{iso}} > 25\,\mathrm{GeV}$
 - Isolated muon (L2_mu20): $p_T^{\mu,\,\mathrm{iso}} > 20\,\mathrm{GeV}$

SU2 direct gaugino production

Union of L2_e22i and L2_mu20

Selection		SU2χ			SU3χ			SU3 incl.	
Stage	L2_e22i	L2_mu20	U	L2_e22i	L2_mu20	U	L2_e22i	L2_mu20	U
OSSF pair	41%	54%	89%	42%	54%	92%	51%	51%	94%
OSSF+3 rd ℓ	58%	67%	93%	59%	63%	95%	66%	68%	98%
after all cuts	57%	66%	92%	58%	57%	94%	66%	64%	97%

[arXiv:0901.0512]

Trilepton + Missing E_T : Triggering

ATLAS

- 3 leptons in the final state:
 - Can easily use lepton triggers!
- Identified optimal triggers for
 - Isolated electron (L2_e22i): $p_T^{e,\,
 m iso} > 25\,{
 m GeV}$
 - Isolated muon (L2_mu20): $p_T^{\mu,\,\mathrm{iso}} > 20\,\mathrm{GeV}$

SU2 direct gaugino production

Union of L2_e22i and L2_mu20

Selection		SU2χ			SU3χ			SU3 incl.	
Stage	L2_e22i	L2_mu20	U	L2_e22i	L2_mu20	U	L2_e22i	L2_mu20	U
OSSF pair	41%	54%	89%	42%	54%	92%	51%	51%	94%
OSSF+3 rd ℓ	58%	67%	93%	59%	63%	95%	66%	68%	98%
after all cuts	57%	66%	92%	58%	57%	94%	66%	64%	97%

[arXiv:0901.0512]

 Overall trigger efficiency for direct gaugino pair-production in SU2 after all cuts: 92%!

Trilepton Search: Systematics for 10 fb⁻¹

From statistical error on background Systematics on trigger + offline See next slides

5% error on JES

Assume

Trilepton Search: Systematics for 10 fb⁻¹

 Understand the rate of leptons from heavy flavour decays passing isolation requirements from data!

Understand Lepton Isolation from Data

- We don't know how well track and calorimeter isolation are modeled in MC:
 - Understand the rate of leptons from heavy flavour decays passing isolation requirements from data!
- Classical Tevatron method:
 - Use bb production from QCD:
 - Vast statistics in principle
 - Restricted by the number of b-jets written to tape
 - Possible biases from b-physics triggers
 - If b-jet PDFs significant @LHC:
 - Gluon-b scattering to dijets!

Understand Lepton Isolation from Data

- We don't know how well track and calorimeter isolation are modeled in MC:
 - Understand the rate of leptons from heavy flavour decays passing isolation requirements from data!
- Classical Tevatron method:
 - Use bb production from QCD:
 - Vast statistics in principle
 - Restricted by the number of b-jets written to tape
 - Possible biases from b-physics triggers
 - If b-jet PDFs significant @LHC:
 - Gluon-b scattering to dijets!
- Our proposal for the LHC:
 - Use semileptonic tt events:
 - Rate-to-tape may be higher than for b-physics
 - No need to rescale the p_T spectrum of *b*-jets
 - More handles to tag an event with a b-jet w/o using it

Opposite charge

Understand Lepton Isolation from Data

Understand Lepton Isolation from Data

Summary

- LHC is *the* BSM discovery machine!
- ATLAS commissioning + alignment progressing well!
- Trilepton + missing E_T final states:
 - Very interesting in BSM context:
 - Higgsless models
 - Supersymmetry
 - especially with "heavy" strong interacting sparticles!
 - Leptons experimentally "easy"
 - Track + calorimeter isolation!
 - For inclusive SU2 production, a 5 sigma discovery appears to be possible with 10 fb⁻¹
 - Triggering strategy OK
- Suggested new approach for the LHC:
 - measure the rate of leptons from leptonic b-decays passing isolation criteria in tt events!

Outlook

ATLAS

- Proceed with the commissioning of ATLAS
- Investigate the same sign dilepton + X signature
- Validate the method to measure the rate of leptons from leptonic b-decays passing isolation criteria in tt events!

DOME MINA INT MA

Outlook

ATLAS

- Proceed with the commissioning of ATLAS
- Investigate the same sign dilepton + X signature
- Validate the method to measure the rate of leptons from leptonic b-decays passing isolation criteria in tt events!

- Measure everything in data!
- First exclusion limits feasible with 0.5 fb⁻¹!

Backup

Backup

SUSY: the Cure for the Diseases?

- Higgs has S=0
- Therefore immense virtual loop corrections to Higgs mass:

- Finetuning at about 10⁻³² level!
 - Strictly speaking, Higgs mass not calculable in SM framework!

SUSY: the Cure for the Diseases?

- Higgs has S=0
- Therefore immense virtual loop corrections to Higgs mass:

- Finetuning at about 10⁻³² level!
 - Strictly speaking, Higgs mass not calculable in SM framework!

SUSY:

- postulate a superpartner for each particle of the SM!
 - Same quantum numbers, but spin different by ½
- SM particle loops are canceled by their superpartners:

We see only a small fraction of mass in Universe:

- The Lightest Supersymmetric Particle (LSP):
 - excellent candidate for Dark Matter!

SUSY in a Nutshell

Minimal version of SUSY:

Exactly one superpartner for each SM particle:

- Higgs sector to be extended:
 - 5 Higgses: h⁰, H⁰, H^{+/-}, A⁰

SUSY in a Nutshell

ATLAS

- SUSY must be spontaneously broken!
- There are few mechanisms for "soft" SUSY breaking:
 - SUGRA
 - GMSB
 - AMSB
 - ...
- SUGRA: too many parameters!
- mSUGRA:
 - Assumption: unification of parameters at GUT scale
 - 5 parameters only!
 - However, decent phenomenological richness!

- Superparticle spectra via evolution from GUT to EW scale
- + matching to precision measurements like WMAP, g_u-2, etc.

DOM: VINCA INC. INC.

SUSY in a Nutshell

- We know:
 - $\tau_{\text{proton}} > 10^{32} \text{ s}$
- It is reasonable to assume:
 - Dark matter candidate stable
- Both imply:
 - R-parity conservation ($R = (-1)^{3(B-L)+2S}$)
- Focus on R-parity conserving models today
 - Generic prediction:
 - Significant missing E_T due to LSPs escaping detection!

Tri-lepton + Missing E_{τ} : Preselection

Trigger: $p_T^{e, \text{iso}} > 25 \,\text{GeV}$ OR $p_T^{\mu, \text{iso}} > 20 \,\text{GeV}$

Lepton preselection:

	Muon	Electron	Jet
p _T cut	> 10 GeV	> 10 GeV	> 10 GeV
η cut	$ \eta < 2.5$	$ \eta < 1.37$	$ \eta < 2.5$
		or $1.52 < \eta < 2.5$	
Calorimeter	$ E < 10 \mathrm{GeV}$	E < 10 GeV	-
Isolation	in $\Delta R = 0.2$	in $\Delta R = 0.2$	_

Resulting lepton distributions:

p_ 3rd leading lepton [GeV]

ATLAS

V Ii

Why Are Leptonic Final States Interesting for BSM Searches?

- Leptons are "easier" to measure:
 - Efficiencies are easier to understand
 - Smaller uncertainties (e.g. no Jet Energy Scale (JES))
 - Can be well understood earlier on!
- Indirect advantages:
 - Can cut on lower missing E_T values
 - Missing $E_T = \Sigma$ (detector problems)
 - Missing E_T problems in the tails!
 - Typically, missing E_T problems when energetic jet mismeasured

- May need track / calo isolation to reject leptons from heavy flavour decays
- Isolation typically badly modeled in MC
 - Need to determine lepton rates from heavy flavour from data!

Why Are Leptonic Final States Interesting for BSM Searches?

- Leptons can be used to reject QCD junk at the LHC:
 - Trigger level:
 - Lepton rates intrinsically much smaller₁₀7
 - Lepton trigger intrinsically more pre-scale safe!
 - Avoid potential biases to event selection!
 - Offline analysis level:
 - Significantly less data to plow through: 10th
 - Will become an issue at higher luminosities!
- Once BSM discovered:
 - Identify model (SUSY, UED, ...)
 - Measure particle spectrum:
 - Leptonic final states are clean
 - Can be measured more precisely!

Tri-leptons on the Other Side of the Pond

- 3I + missing E_T signature: long tradition at the Tevatron
 - Dubbed "Golden channel"

DØ: search for 3I + missing ET + X Uses 3I and 2I + track

CDF: search for 3I + missing E_T + X Uses 3I and 2I + track

- Very similar philoshophy
 - Differences in the small print