## SUSY Gauge Singlets and Dualities IOP HEPP 2009

#### Steve Abel and James Barnard

Durham University IPPP, Department of Mathematics

April 8th 2009



- Seiberg duality<sup>1</sup> in  $\mathcal{N} = 1$  SUSY gives us a different way of looking at supersymmetric gauge theories.
- We believe it will help in understanding many aspects of BSM physics such as gauge unification, proton decay and dynamical SUSY breaking.
- Problem: currently, dualities only exist for theories with highly constrained matter content and unrealistic superpotentials.
- Our goal is to find a dual theory to a more realistic GUT, like a supersymmetric SU(5) model.

 $^1 {\rm For}$  a review: K. Intriligator, N. Seiberg - arXiv:hep-th/9509066

# Example: "Dualification"

- Consider a SUSY GUT which breaks SUSY via direct mediation.
- The messenger particles are charged under the visible sector gauge group.



# Example: "Dualification"

- Now look at the RG flows of coupling constants. The messengers deflect the gauge coupling unification.
- Extrapolating to higher scales it may appear as though unification occurs at a negative, unphysical value of the coupling constant  $\frac{1}{\alpha}$ .
- In the dual theory the unification is much more natural.<sup>2</sup>



<sup>2</sup>S. Abel, V.V. Khoze - arXiv:809.5262[hep-ph]

| Original theory - SQCD with N colours and $F_Q$ flavours |   |                         |             |                           |  |  |  |  |
|----------------------------------------------------------|---|-------------------------|-------------|---------------------------|--|--|--|--|
|                                                          |   | SU(N)                   | $SU(F_Q)_L$ | $SU(F_Q)_R$               |  |  |  |  |
|                                                          | Q | N                       | FQ          | 1                         |  |  |  |  |
|                                                          | Õ | $\overline{\mathbf{N}}$ | 1           | $\mathbf{F}_{\mathbf{Q}}$ |  |  |  |  |

Dual theory - SQCD+M with  $n = F_Q - N$  colours and  $F_Q$  flavours

|   | $\mathrm{SU}(n)$        | $\mathrm{SU}(F_Q)_L$                 | $\mathrm{SU}(F_Q)_R$                 |
|---|-------------------------|--------------------------------------|--------------------------------------|
| q | n                       | $\overline{\mathbf{F}_{\mathbf{Q}}}$ | 1                                    |
| q | $\overline{\mathbf{n}}$ | 1                                    | $\overline{\mathbf{F}_{\mathbf{Q}}}$ |
| М | 1                       | $\mathbf{F}_{\mathbf{Q}}$            | $\mathbf{F}_{\mathbf{Q}}$            |

# Tests of the duality

- The global symmetries of both theories are the same.
- The classical moduli spaces of both theories are the same (i.e. the mesons and baryons match).
- The duality is preserved under deformations, e.g. quark mass terms.
- Highly non-trivial 't Hooft anomaly matching conditions are satisfied, especially those involving the *R*-symmetry.



### Mesons and superpotential







### Mesons and superpotential



Original theory - SU(*N*)  
• *F*<sub>Q</sub><sup>2</sup> mesons 
$$\tilde{Q}Q$$

Dual theory - 
$$SU(F_Q - N)$$

• 
$$W_{\rm dual} = M \tilde{q} q$$

• *F*-terms give 
$$\tilde{q}q = 0$$

- To find a dual GUT, we need to be able to find dualities for theories with adjoint and/or antisymmetric representations of the gauge group.
- Consider adding an adjoint X to the original theory<sup>3</sup>. The mesons are now

$$M_j = \tilde{Q} X^j Q$$

for **any** positive integer j.

<sup>3</sup>D. Kutasov, A. Schwimmer, N. Seiberg - arXiv:hep-th/9510222 Steve Abel and James Barnard SUSY Gauge Singlets and Dualities

#### Adding more matter







#### Adding more matter



#### Original theory - SU(N)

• 
$$W_{\text{orig}} = X^{k+1}$$

• *F*-terms give 
$$X^k = 0$$

• 
$$kF_Q^2$$
 mesons  $M_j = \tilde{Q}X^jQ$ 

• 
$$j = 0, \ldots, k - 1$$

#### Dual theory - $SU(kF_Q - N)$

• 
$$W_{\text{dual}} = x^{k+1} + \sum_j M_j \tilde{q} x^{k-1-j} q$$

• *F*-terms give 
$$x^k = \tilde{q}x^j q = 0$$

- Adding a superpotential to the original theory is often necessary, but reduces the number of global symmetries.
- If there are too few global symmetries we cannot test the duality properly.
- In particular, it seems very important for the theory to retain an *R*-symmetry to ensure non-trivial 't Hooft anomaly matching conditions.
- By adding gauge singlets to the superpotential we can generally retain an *R*-symmetry.
- This allows us to find **and test** new dualities with more general matter content.<sup>4</sup>

<sup>4</sup>S. Abel, J. Barnard - arXiv:0903.1313[hep-th]

## Example: three generations of antisymmetric tensor

- Consider SQCD with N colours, F<sub>Q</sub> flavours of quark/antiquark, three antisymmetrics and a singlet φ.
- Include a superpotential to fix the meson sector

$$\begin{aligned} W_{\text{orig}} &= \phi^{\rho_A} (A\tilde{A})^{k_A+1} + \phi^{\rho_B} (B\tilde{B})^{k_B+1} + \phi^{\rho_C} (C\tilde{C})^{k_C+1} + \\ &\phi^{\sigma} \left( A\tilde{B} + \tilde{A}B + B\tilde{C} + \tilde{B}C \right). \end{aligned}$$

- The inclusion of  $\phi$  restores an *R*-symmetry.
- A dual theory can now be shown to exist, with

$$n = (2k^* + 1)F_Q - 4k^* - N$$

colours, where

$$k^* = \frac{1}{2} \left[ (2k_A + 1)(2k_B + 1)(2k_C + 1) - 1 \right]$$

- Seiberg duality has great potential to help in many areas of BSM phenomenology.
- If we want to fully exploit this potential, we **must** find dualities involving realistic models.
- This means relaxing the conditions on the superpotential and matter content required to permit a duality.
- Gauge singlets are a useful tool to help with this task.
- By including gauge singlets in our theories, we have already been able to construct dualities involving multiple generations of antisymmetric tensor.