

Two-Body Charmless Hadronic *B* Decays at LHCb

Laurence Carson
University of Glasgow
IOP HEPP Group Meeting
6th April 2009

I.carson@physics.gla.ac.uk

Overview

- What are two-body hadronic B decays good for?
 - Measurement of CKM angle γ
 - Discovery of rare baryonic modes
- What LHCb needs to study such decays
 - Proper time resolution calibration for γ measurement
 - Selection for rare decay $B_0 \rightarrow p\bar{p}$

The LHCb Experiment

- Dedicated B physics experiment at the LHC
- Well suited to study two-body hadronic (a.k.a. $B \rightarrow h^+h^-$) decays

Proper Time Resolution Calibration

Measuring γ

- γ easily the least well-constrained CKM parameter:
 - Direct measurements give $\gamma = (70^{+27}_{-30})^{\circ}$

- Compare with tree-only decays (e.g. $B \rightarrow DK$)

Proper Time Resolution Model

- Fast B_s oscillations mean that the reconstructed proper time (τ_{rec}) distribution for B_s channels is dependent on detector proper time resolution.
- τ_{rec} distribution for flavour-specific final state (e.g. $B_s \rightarrow K^-\pi^+$) will not depend on the CP asymmetry. But for a *CP* eigenstate (e.g. $B_s \rightarrow K^-K^+$) it will depend on CP asymmetries (direct and indirect).

- Hence incorrect proper time resolution model can bias extraction of γ .
- Resolution model used has the form (where $\Delta \tau \equiv \tau_{rec}$ τ_{true}):

$$R(\Delta \tau) = (1 - F) \cdot e^{-\frac{1}{2} \left(\frac{\Delta \tau - M}{S}\right)^2} + F \cdot e^{-\frac{1}{2} \left(\frac{\Delta \tau}{S_{fixed}}\right)^2}$$

$$Main \qquad \text{Secondary}$$

$$\text{Gaussian} \qquad \text{Gaussian}$$

Validation of Resolution Model

- Model validated by fitting to $\Delta \tau$ distribution for simulated $B \rightarrow h^+h^-$ events.
- Parameters M and S are calculated event-by-event, using $M \equiv GM \cdot \sigma_{rec}$ and $S \equiv GS \cdot \sigma_{rec}$ (σ_{rec} is per-event error).
 - *GM* (*GS*) is effectively the pull mean (width) of the τ_{rec} calculation.
- Values of GS, GM and F2 are found that allow $R(\Delta \tau)$ to accurately describe the $\Delta \tau$ distribution in each channel. Values across channels are consistent.

Fit for Parameters from Data

- Extract parameters from fit to τ_{rec} of $B_s \rightarrow K^-\pi^+$, then apply to $B_s \rightarrow K^-K^+$.
- Build toy τ_{rec} distribution for $B_s \rightarrow K^-\pi^+$
 - Use resolution model found from fit to (full MC) $\Delta \tau$ distribution.
 - Physics parameters (like τ_{Bs}) and mistag rate are assumed to have been measured from other channels.
 - Add background: combinatoric bkg (dominant), and specific bkg from $B_d \rightarrow K^+\pi^-$.
- Each toy job contains 20k events (6k signal)
 - Corresponds to 2fb⁻¹ of data

- Input values recovered without significant biases, and pull widths all compatible with 1.
- The sensitivities are such that from $2fb^{-1}$ onwards the fit can start to give nontrivial input into the analysis of $B_s \rightarrow K^-K^+$, and hence the γ measurement.

Search for
$$B_d \rightarrow p\bar{p}$$

Two-Body Baryonic B Decays

- No decay of a B to two charmless baryons has yet been observed.
 - Several possibilities exist $(p, n, \Lambda, \Sigma...)$
- Theoretical predictions for SM branching ratios (B.R.s) vary widely
 - No agreement between different methods, even in order of magnitude

- Most promising channel for LHCb is $B_d \rightarrow p\bar{p}$
 - Commonality with benchmark $B \rightarrow h^+h^-$ ($h = \pi$, K) modes
 - PID can reduce combinatorial and specific backgrounds
 - Experiment: B.R. < 1.1*10⁻⁷ (dominated by Belle)
 - Other possibilities for LHCb include $B_s \rightarrow p\bar{p}$ and $B_u \rightarrow p\bar{\Lambda}$.

$B_d \rightarrow p\bar{p}$ Selection

- Starting point for selection is that used for standard $B \rightarrow h^+h^{'-}$ modes
 - Geometrical cuts (impact parameter significance, flight distance)
 - Kinematic cuts (transverse momentum, invariant mass)
- Extra cuts added to further reduce background

Overall efficiency of selection on signal = 9.8%

Backgrounds to $B_d \rightarrow p\bar{p}$

- Combinatorial background killed by geometrical and kinematic cuts
- Specific background killed by mass and PID cuts

5000

5200

5400

In signal mass region ($m_{Bd}\pm50 \text{MeV}$), no background events (combinatorial or specific) survive selection.

 Allows upper limit on selection "efficiency" for backgrounds to be set using Feldman-Cousins method.

Reconstructed Mass (MeV)

Yields & Sensitivity

Signal and background yields given by:

- If BR($B_0 \rightarrow p\overline{p}$) \approx current expt limit, discovery with 0.24fb⁻¹ (in 2009/10 run).
- BR measured by normalising to BR($B_d \rightarrow K^+\pi^-$), which is already well known.

Conclusions

Two-body hadronic *B* decays offer exciting opportunities for LHCb:

- γ measurement with $B_0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^-K^+$
 - Need calibration of $B_s \rightarrow K^-K^+$ proper time resolution model to avoid bias on γ .
 - Calibration method developed using $B_s \rightarrow K^-\pi^+$ as control channel.
- Discovery of new baryonic modes
 - Selection developed for $B_0 \rightarrow p\bar{p}$.
 - Can be observed in 2009/10 run if branching ratio is near current experimental limit.
 - Observation of $B_s \rightarrow p\bar{p}$ and $B_u \rightarrow p\bar{\Lambda}$ may be possible with more data.