Highlights of HERA and Deep Inelastic Scattering

Paul Newman (Birmingham)

IOP HEPP Meeting, Oxford 6 April 2009

Basic Deep Inelastic Scattering Processes

 $Q^2 = -q^2$: resolving power of interaction

 $x = Q^2 / 2q.p$: fraction of struck quark / proton momentum

Proton "Structure"?

Physics at the Tevatron and the LHC is about interactions between proton constituents ...

2 up and 1 down valence quarks

... and some gluons

... and some sea quarks

... and lots more gluons and sea quarks ...

→ strong interactions induce rich and complex `structure' of high energy proton interactions!

Scattering electrons from protons at $\sqrt{s} > 300 GeV$ at HERA data has established proton 'structure' over a huge kinematic range ...

... parton density functions

HERA kinematic range

- Unprecedented low x and high Q^2 coverage in DIS!
- HERA + QCD factorisation
 →parton densities in full x
 range of LHC rapidity plateau

Well established `DGLAP'
 evolution equations generalise
 to any scale (for not too small x)

e.g. pp dijets at central rapidity: $x_1=x_2=2p_t/\sqrt{s}$

H1 Integrated Luminosity / pb⁻¹

Luminosity and Status

- Total of ~200 pb⁻¹ e⁻p, 300 pb⁻¹ e⁺p per experiment.
- Both lepton polarisation states
- ~25 pb⁻¹ @ lower $E_{\rm b}$ = 575, 460 GeV

- HERA-I publications coming to an end.
- HERA-II searches largely complete
- Complicated final states take time (& UK experts) to analyse

The Power of Combinations

 Combinations of H1 & ZEUS cross sections, search limits & parton densities well underway...

Beyond the √2 statistical improvement, effectively cross-calibrate to tackle (different) dominating H1, ZEUS systematics.

Probing 300 GeV eq Interactions with 1 fb-1

A 'General' high pt Summary

- No significant
 BSM signals
- Also studied in all possible ΣM intervals ...
- Detectors and physics processes well understood!

The Standard Model & HERA part as good friends!

Electroweak Unification for Space-like Bosons

Neutral Current x-sec

$$\frac{\mathrm{d}\sigma^{NC}}{\mathrm{d}x\,\mathrm{d}Q^2} \sim \alpha_{em}^2 \quad \bullet \quad \left(\frac{1}{Q^2}\right)^2 \quad \bullet \quad \tilde{\sigma}_{NC}$$

Charged Current x-sec

$$\frac{\mathrm{d}\sigma^{CC}}{\mathrm{d}x\,\mathrm{d}Q^2} \sim G_F^2 M_W^2 \cdot \left(\frac{1}{Q^2 + M_W^2}\right)^2 \cdot \tilde{\sigma}_{CC}$$

- NC and CC cross sections become comparable at EW unification scale (couplings unified)
- Parton density info encoded in $\tilde{\sigma}_{NC}$ and $\tilde{\sigma}_{CC}$

Recent Neutral Current Data

- NC data primarily measure F_2 structure fn ...
- Due to e_q^2 photon coupling, NC provides best constraints on **u** (and **ubar**) density

1.5-2% precision in final
 H1 intermediate Q² data

• 169pb⁻¹ (final ZEUS high Q² e⁻p data) ... 2-3% syst precision

 10^{-1}

 10^{-2}

Varying the Lepton Charge and Polarisation

Difference between e⁻p
 and e⁺p NC cross sections
 measures xF₃ structure fn...

$$xF_3 \sim 2x \sum_q e_q a_q (q - \overline{q}) \sim q_v$$

... unique sensitivity to valence quarks

Significant NC lepton polarisation asymmetry observed ... tests vector and axial EW lepton couplings and d/u ratio as $x\rightarrow 1$

HERA I e⁺p Charged Current Scattering - H1 and ZEUS

 Charged current sensitive to flavour decomposition ...
 e.g. e⁺p constrains d density

Recent Charged Current Data

 Linear dependence on polarisation well tested
 ... chiral structure of SM

Q² Evolution and the Gluon Density

- Q^2 evolution of F_2 yields low x gluon, assuming DGLAP
- · Other observables needed @ high x, where g sensitivity lost

Measuring Heavy Quarks

- Ambiguities in treating heavy flavours in parton densities ...
- Generate dynamically from gluon?
- Treat as an active flavour?
- HF evolution HERA \rightarrow LHC important for $\sigma(W)$, $\sigma(Z)$ in SM
- bbbar \rightarrow H ... e.g. big differences between predictions in SM & high tan β MSSM
- Extensive HERA data (D* tagging, secondary vertices) are used to constrain models → increasingly sophisticated HF schemes in fits

flavour decomposition of W cross sections

Understanding Charm and Beauty Production

H1+ZEUS BEAUTY CROSS SECTION in DIS

What is a Proton?

- NLO DGLAP fits to NC and CC data [to $O(\alpha_s^2)$] used to obtain valence, sea quarks and gluon using HERA-I data alone (zero mass VFNS)
- Improved low x uncertrainties due to inclusion of combined H1-ZEUS data
- · Gluon density becomes enormous at low x

Broadly consistent with global fits (MSTW, CTEQ)

Caveats:

- No paramⁿ uncertainites
- High x region ...

A Closer Look at High x

Errors explode at

highest x (improves

with Q² evolution)

Test overall picture with F_L extracted by varying beam energy.

If gluon dominates, $F_L \sim \alpha_s \times g(x)$.

... More to come at low Q^2

A Test of the Validity of DGLAP

 At low x, LHC predictions rely on assumption of DGLAP evolution ... yet many novel effects predicted ...

Search for Gluon Saturation

- Gluon density cannot rise indefinitely as x decreases (unitarity)
- DGLAP approximation to QCD may be insufficient e.g. due to neglect of gg→g recombination

e.g. from local derivatives with respect to x no evidence for any deviation from a single power law for $\mathbb{Q}^2 \sim 1 \text{ GeV}^2$

HERA-LHC Workshop ... (see also PDF4LHC)

Workshop on the implications of HERA for the LHC (partons, jets, heavy flavours, diffraction, MC tools ...)

807 pages! — (March 2009)

Impressum

Proceedings of the workshop HERA and the LHC

2nd workshop on the implications of HERA for LHC physics 2006 - 2008, Hamburg - Geneva

Conference homepage http://www.desy.de/~heralhc

Online proceedings at

http://www.desy.de/~heralhc/proceedings-2008/proceedings.html

Examples of Precision on LHC Cross Sections

W Rapidity Spectra:

- 1.5% experimental error in central region (... from HERA-I only!)
- ... a further 3-4% theory uncertainty
- Z/W ratio <2% total uncertainty ...

Higgs cross section:

- PDF uncertainty ~ 3%
- Scale uncertainty ~ 10%

No high energy ep physics approved beyond 2007!..

LHeC: Latest of several proposals to take ep physics into the TeV energy range but with unprecedented lumi!

... achievable at LHC simultaneously with normal pp operation... [JINST 1 (2006) P10001]

A possible DIS future?

Ongoing workshop www.lhec.org.uk

Contributions welcome!

Kinematics & Motivation for 100 GeV x 7 TeV

Summary

- After 15 years of running, HERA provided a unique data-set.
- ~400 publications, mostly on HERA-I:
 - The basis of our knowledge of the LHC initial state
 - Big advances in understanding QCD
 - Searches, EW, spectroscopy ...
- ~100 publications with final precision expected '09-'12 if HERA-II exploited:
 - Factor ~4 in statistics
 - Best detector understanding and performance
 - H1 + ZEUS combinations

- ...

Back-Ups Follow

HERA inclusive diffraction

 \cdot ~10% of low x intⁿs in which proton survives

Data reached 4% precision

 (β)

 (x_{IP})

p

Understood in terms of Diffractive PDFs

 Q^2 (GeV²)

Structure Function $F_2(x, Q^2)$

$$F_2(x,Q^2) \sim x \sum_q e_q^2(q+\overline{q})$$

The data before HERA ...

In 1992, low x physics was an obscure field, known only to Russians!

$F_L(x, Q^2)$ v Fixed Target and Indirect Data

Neutral Current Sensitivity to the Quarks

NC cross section depends on 3 structure functions ...

$$\tilde{\sigma}^{NC}(e^{\pm}p) = F_2 \mp \frac{Y_-}{Y_+} x F_3 - \frac{y^2}{Y_+} F_L$$
 ... where $Y_+ = 1 \pm (1-y)^2$

... and y measures the process inelasticity

- F₂ dominates throughout most of the phase space
- xF_3 contributes at high Q^2 (Z exchange) can be obtained from difference between e^+p and e^-p cross sections
- F_L contributes at high y (longitudinally polarised photons)

HERA-only Partons: Combination Power

HERA-only Partons v Global Fits

Good comparison to global fits, improved precision, however the error treatment also differs.

Q² Evolution via Local Derivatives

$$\frac{\mathrm{d}F_2}{\mathrm{d}\ln Q^2} \sim \alpha_{\mathrm{s}} \left(P_{qg} \otimes g + P_{qq} \otimes q \right)$$

DGLAP-based fit provides a good description at level of derivatives from differences between neighbouring points