

Neutrino mass and neutrinoless double beta decay (0vßß)

Ruben Saakyan, UCL Annual IOP HEPP Conference Oxford 8 April 2009

Outline

- Double Beta Decay and neutrino mass
- Experimental techniques
- Current and Future projects

Disclaimer: Weighted/biased by UK participation

Neutrinos are massive and they mix

What else do we want to know?

Number of neutrinos: Are there sterile neutrinos?

 Λ θ_{13} , Precision values of mixing angles and Δm^2 's

Absolute neutrino mass value. Only limits so far. Tritium: $m_{\overline{v_e}} < 2.3 \text{ eV}$ Cosmology: $\sum m_{v_i} < 1 \text{ eV}$

Neutrino mass spectrum: Normal (m₁ < m₂ < m₃) Inverted (m₃ < m₁ < m₂) or Quasi-degenerate (m₁≈m₂≈m₃)?

Nature of Neutrinos: Majorana (v = anti-v) or Dirac (v ≠ anti-v)? Full lepton number violation (required in most Grand Unification Theories). addressed by 0vββ decay

Nuclear Physics and Standard Model $\beta\beta$ decay

For most even-even nuclei only $\beta\beta$ decay is possible (recall pairing term in SEMF!)

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v}_{e}$ $(A,Z) \rightarrow (A,Z-2) + 2e^{+} + 2v_{e}$ $2e^{-} + (A,Z) \rightarrow (A,Z-2) + 2v_{e}$

NME is **measured** in $2\nu\beta\beta$

<u>NME</u>: -Nasty Nuclear Matrix Element

Measured for 10 nuclei Important input for $0\nu\beta\beta$ NME calculation! Important to understand its background contribution Neutrinoless double beta decay ($0\nu\beta\beta$)

depending on Majorana CPV phases:

 $\left|\left\langle m_{v}\right\rangle\right| \simeq 0.1 - 0.5 \text{ eV}$

 $\left|\left\langle m_{v}\right\rangle\right| \simeq 0.02 - 0.05 \text{ eV}$

Quasi-degenerate hierarchy (m₁≈m₂≈m₃) – best case

Inverted hierarchy $(m_3 < m_1 < m_2)$ – tough but doable

 $|\langle m_v \rangle| \simeq 0.0 - 0.006 \text{ eV}$ Normal hierarchy (m₁ < m₂ < m₃) - really tough

IOP HEPP 6-8 April 2009

R. Saakyan (UCL) Double Beta Decay

Need detectors which can probe different mechanisms (and different isotopes)

Backgrounds

Cosmic rays

Underground Lab is a must

The Uranium-238 Decay Chain

Natural Radioactivity

$$\begin{split} & \mathsf{T}_{1/2}(^{238}\mathsf{U},\,^{232}\mathsf{Th}) \sim 10^{10} \ \mathsf{yr} \\ & \mathsf{T}_{1/2}(0\nu\beta\beta) > 10^{25} \ \mathsf{yr} \\ & \mathsf{Main \ threat \ from:} \\ ^{214}\mathsf{Bi} \ (\mathsf{Q}_{\beta} = 3.27 \ \mathsf{MeV}) \\ & ^{208}\mathsf{TI}(\mathsf{Q}_{\beta} = 4.99 \ \mathsf{MeV}) \end{split}$$

Radio-purity and bkg identification

Standard Model 2vββ

Irreducible bkg Energy resolution is the only weapon here

lsotopes

Centrifuge enrichment well established x100 kg production possible

Indicative price: 30-60 k€/kg

Deuterium	2
Helium gas	3
Lithium	6 7
Carbon	13
Silicon	28 29 30
Sulphur	32 33 34 36
Chromium	50 52 54
Iron	54 56 57 58
Zinc /Depleted Zinc/	64 66 67 68 70
Gallium	69 71
Germanium	70 72 73 74 76
Selenium	74 76 77 78 80 <mark>82</mark>
Krypton	78 80 82 83 84 86
Molybdenum	96 97 98 100
Cadmium	108 110 111 112 113 114 116
Tellurium	122 123 124 128 130
Xenon	124 126 128-132 134 136
Osmium	184 186 187 188 189 190 192
Lead	204 206 207 20

High $Q_{\beta\beta}$ is important due to phase space and natural radioactivity considerations

Isotope	Q _{ββ}	Abund	
	(MeV)	(%)	
⁴⁸ Ca→ ⁴⁸ Ti	4.271	0.187	
⁷⁶ Ge→ ⁷⁶ Se	2.040	7.8	
⁸² Se→ ⁸² Kr	2.995	9.2	
⁹⁶ Zr→ ⁹⁶ Mo	3.350	2.8	
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.6	
¹¹⁰ Pd→ ¹¹⁰ Cd	2.013	11.8	
¹¹⁶ Cd→ ¹¹⁶ Sn	2.802	7.5	
¹²⁴ Sn→ ¹²⁴ Te	2.228	5.64	
¹³⁰ Te→ ¹³⁰ Xe	2.533	34.5	
¹³⁶ Xe→ ¹³⁶ Ba	2.479	8.9	
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.367	5.6	

Unfortunately not possible for

¹⁵⁰Nd, ⁴⁸Ca, ⁹⁶Zr

Alternative for these isotopes: AVLIS (Atomic Vapour Laser Isotope Separation) Interesting developments at the MENPHIS facility in France.

IOP HEPP 6-8 April 2009

General Strategy

$$T_{1/2}^{0v(y)} > \frac{\ln 2 \cdot N}{k_{C.L.}} \cdot \frac{\varepsilon}{A} = \sqrt{\frac{M \cdot t}{N_{Bkg} \cdot \Delta E}}$$

$$\begin{split} &M: mass~(kg) \\ &\epsilon: efficiency \\ &K_{C.L.}: Confidence~level \\ &N: Avogadro~number \\ &t: time~(y) \\ &N_{Bckg}: Background~events~(keV^{-1}.kg^{-1}.y^{-1}) \\ &\Delta E: energy~resolution~(keV) \end{split}$$

 \bigvee Low N_{Bkg} . ΔE **Note:** The product is important when

considering backgrounds

 $\stackrel{\scriptstyle{\scriptstyle{\frown}}}{=}$ "Squeeze" ΔE - improve resolution

 \bigvee Lower N_{Bkg} - improve non- $\beta\beta$ background rejection (topology, particle ID etc)

The Claim

HPGe detector (86% enriched)
 Full stat (71.71 kg y)
 Outstanding resolution 3.27 keV
 Unknown line at 2038 keV found
 I = 28.75 ± 6.86 events, 4.2σ
 T_{1/2} = (0.69-4.18) 10²⁵ y (3σ range, best fit = 1.19)

Can not be dismissed out of hand BUT

Background under-estimated
 Relative intensities problem with ²¹⁴Bi lines
 Unknown line in the same region

KKDC claim (subset of Heidelberg-Moscow collaboration)

 $< m_v >= 0.1 - 0.9 \,\text{eV}(\text{KKDC}, 2004)$

#⁵⁶Co by cosmic rays (γ 2034keV+6keV
X-ray)
#⁷⁶Ge(nγ)⁷⁷Ge (2038 keV)
An unknown line
A combination of the above

Tracking + Calorimetry, source ≠detector NEMO-III and SuperNEMO (~90 people) NEMO-III SuperNEMO

Major contribution from UK and France: ~80% shared equally

UK collaboration: UCL-HEP, UCL-MSSL, University of Manchester, IC.

IOP HEPP 6-8 April 2009

R. Saakyan (UCL) Double Beta Decay

NEMO-III and SuperNEMO

Detection principle: reconstruct topological signature

NEMO3/SuperNEMO approach. Calorimetry + Tracking

Search for <u>any</u> lepton violating process including with continuum spectrum (e.g. Majoron)
 Attempt to disentangle the underlying physics mechanism through electron's angular distribution and individual energy analysis

NEMO3 Results

<u>Unprecedented accuracy of $2\nu\beta\beta$ measurements</u>

IOP HEPP 6-8 April 2009

NEMO3 Results

Large UK analysis effort

⁹⁶Zr T_{1/2} ($2\nu\beta\beta$) = [2.3 ± 0.2(stat) ± 0.2(syst)] × 10¹⁹ y

paper about to be submitted to Nucl. Phys. A

R. Saakyan (UCL) Double Beta Decay

¹⁵⁰Nd $T_{1/2} (2\nu\beta\beta) = [9.20 + 0.25 - 0.22 \text{ (stat)} \pm 0.62 \text{ (syst)}] \times 10^{18} \text{ y}$

submitted to PRL

IOP HEPP 6-8 April 2009

paper in preparation

⁹⁶Zr T_{1/2} (2νββ) = [2.3 ± 0.2(stat) ± 0.2(syst)] × 10¹⁹ y

NEMO3 Results

Large UK analysis effort

¹⁵⁰Nd $T_{1/2} (2\nu\beta\beta) = [9.20 + 0.25 - 0.22 \text{ (stat)} \pm 0.62 \text{ (syst)}] \times 10^{18} \text{ y}$

submitted to PRL

R. Saakyan (UCL) Double Beta Decay

SuperNEMO Detector

Funded Design Study 2006-2009 Calorimeter $\Delta E/E = 7\%/\sqrt{E}$ (MeV) $\Rightarrow 4\%$ at $Q_{\beta\beta}$ Source radiopurity: ²⁰⁸Tl < 2µBq/kg, ²¹⁴Bi < 10µBq/kg (if ⁸²Se) Tracker optimization – automated wiring

<u>Planar</u> and <u>modular</u> design: ~ 100 kg of enriched isotopes (20 modules x 5 kg)

<u>1 super-module:</u>

Source (40 mg/cm²) 4 x 3 m² Tracking : drift chamber ~2000 cells in Geiger mode Calorimeter: scintillators + PMTs

~ 700 PMTs if scint. blocks

~ 250 PMTs if scint. bars

Modules surrounded by water passive shielding in an underground lab (new-LSM)

All deliverables on track to be completed by mid-2009

SuperNEMO Detector

<u>Planar</u> and <u>modular</u> design: ~ 100 kg of enriched isotopes $(20 \text{ modules } \times 5 \text{ kg})$

<u>1 super-module:</u>

Source (40 mg/cm²) $4 \times 3 \text{ m}^2$ **Tracking : drift chamber** ~2000 cells in Geiger mode **Calorimeter: scintillators + PMTs**

~ 700 PMTs if scint. blocks ~ 250 PMTs if scint. bars **Modules surrounded by** water passive shielding in an underground lab (new-LSM)

All deliverables on track to be completed by mid-2009

Next step: To build 1st SuperNEMO module - Demonstrator

Goals

Demonstrate feasibility of large scale mass production To measure backgrounds especially from radon emanation <u>Solve a sealistic super-module</u> To finalise detector design To produce a competitive physics measurement Simple counting experiment: 0.3 bkg. events in R.O.I with 7kg of 82 Se in 1.5 yr $T_{1/2}^{0\nu}(90\% CL) > \frac{M}{A} N_A \frac{\varepsilon \ln 2}{n} t = \frac{7kg \cdot 10^3}{82 a} 6 \cdot 10^{23} \frac{0.3 \cdot 0.69}{2 4} 1.5 yr = 6.6 \cdot 10^{24} yr$

Assuming equal NMEs and known differences in phase space values, it is equivalent to $3\cdot 10^{25}$ yr for ⁷⁶Ge (GERDA-Phasel)

or ~5 expected "golden events" if Klapdor is right

Proposal submitted to PPRP

IOP HEPP 6-8 April 2009

SuperNEMO sensitivity:

500 kg x yr, target bkg levels (2 and 10 µBq/kg of ²⁰⁸Tl and ²¹⁴Bi)

 $\frac{{}^{82}Se}{{T}_{1/2}(0v)} = 10^{26} \text{ yr}$

 $(m_v) \le 0.05 - 0.11 \text{ eV}$ (range due to Nuclear Matrix Element uncertainties)

150Nd:

 $T_{1/2}(0v)$ =5 10²⁵ yr <m_v> \leq 0.045 eV (but deformation **not** taken into account)

SuperNEMO sensitivity:

500 kg x yr, target bkg levels (2 and 10 µBq/kg of ²⁰⁸Tl and ²¹⁴Bi)

 $\frac{{}^{82}Se}{{}^{7}_{1/2}(0v)} = 10^{26} \text{ yr}$

 $< m_v > \le 0.05 - 0.11 \text{ eV}$ (range due to Nuclear Matrix Element uncertainties)

150Nd:

 $T_{1/2}(0v)$ =5 10²⁵ yr <m_v> \leq 0.045 eV (but deformation **not** taken into account)

Talk by C. Jackson later today

SuperNEMO schedule overview

Target sensitivity of 50-100 meV by 2018

Source = detector approaches

Scintillator calorimeters

- Semiconductors (HPGe, CdZnTe)
- Bolometers
- Liquid/Gas Xe TPC

of

backgrounds).

^{nat}Nd radio-purity is one of key questions

*150Nd deformation not taken into account in NME calculation

Possibility to enrich Nd with AVLIS (joint R&D with SuperNEMO)

 $(10^{-14} \text{ g/g in U and Th required})$

• If enriched, 50 meV* sensitivity possible

simulation of one year of data testing $< m_v > = 150 \text{ meV} (500 \text{kg of } {}^{150}\text{Nd})$

The Simulated Spectrum of Double Beta Decay Events ¹⁵⁰Nd double beta decays with an endpoint 300 per Year 3.37 MeV (above most 250 15 keV Poor energy resolution compensated by 200 little material near fiducial volume рег meters of self-shielding Events 150 source in-source out capability 100 Nd-loaded liquid scintillator ²¹⁴Bi • 0.1% ^{nat}Nd in 1000 t of liquid scintillator 2087 50 • 56 kg of ¹⁵⁰Nd 0.1 eV* sensitivity with ^{nat}Nd 2.6 2.8 3.2 3.4 3.6 3.8 3 Quick "turnaround" Energy (MeV)

IOP HEPP 6-8 April 2009

R. Saakyan (UCL) Double Beta Decay

UK participation proposal submitted to PPRP

⁷⁶Ge - best way to check KKDC claim (free from NME uncertainties).

Naked enriched (86%) Ge-detectors in LAr Phased Approach.

Phase I: Existing detectors (HM+IGEX) 17.9 kg enriched diodes Bkg free proble of KKDC: 10⁻² cts/kg keV yr

Phase II Add new diodes (total: 40kg) Bkg < 10⁻³ cts/kg keV yr

Both phases funded. Under construction

Next step: GERDA + Majorana

IOP HEPP 6-8 April 2009

GERDA. ⁷⁶Ge

Phase III: GERDA + Majorana toward 1 ton detector Depends heavily on background achieved in first two phases

CUORICINO and NEMO-III are the only running DBD experiments at the moment

B34

3000

3500

4000

CUORICINO

19 CUORICINO-like towers

CUORE

Main background: Surface contamination close to fiducial volume (Recall CUORICINO background level 0.18±0.02 c/keV/kg/y)

Two-pronged approach to tackle this background: Passive \Rightarrow surface cleaning Active \Rightarrow event ID: Enrichment is also possible

- Surface sensitive bolometers
- Scintillating bolometers

Expected sensitivities (5 years of data)

"Baseline" scenario"Aggressive" scenario N_{bckg} =0.01 cts.keV-1.kg-1.yr-1 N_{bckg} =0.001 cts.keV-1.kg-1.yr-1 $T_{\frac{1}{2}} > 2.1 \ 10^{26} \ yr$ $T_{\frac{1}{2}} > 6.6 \ 10^{26} \ yr$ $< m_{v} > < 0.03 - 0.17 \ eV$ $< m_{v} > < 0.015 - 0.1 \ eV$

Planned start-up: 2011

EXO - Enriched Xenon Observatory - ¹³⁶Xe

Liquid Xe TPC Energy measurement by ionization + scintillation Tagging of Barium ion ($^{136}Xe \rightarrow ^{136}Ba^{++} + 2e^{-}$)

Optical spectroscopy with Ba+

Ion Grabber/mover

Case	Mass (ton)	Eff. (%)	Run Time (yr)	σ _E /E @ 2.5MeV (%)	2vββ Background (events)	T _{1/2} ⁰ v (yr, 90%CL)	Majorana mass (meV) QRPA [‡] NSM [#]	
Conserva tive	1	70	5	1.6*	0.5 (use 1)	2*10 ²⁷	50	68
Aggressi ve	10	70	10	1†	0.7 (use 1)	4.1*1028	11	15

EXO

200 kg of LXe (80% enriched ¹³⁶Xe in hand)

No Ba+ tagging

Ionization + scintillation to improve $\Delta E/E$ and detect apha (BiPo bkg suppression)

Being commissioned in WIPP (New Mexico) Physics run to start in 2009

Goals:

• Measure $2\nu\beta\beta$ of ¹³⁶Xe

Search for $0\nu\beta\beta$ in ¹³⁶Xe with competetive

sensitivity

T_{1/2}^{0v} > 6.4 10²⁵ y (after 2y)

Understand the operation of a large LXe detector

- Backgrounds
- Resolution, Xe purification and handling

Apologies to

Majorana

 US-based ⁷⁶Ge experiment (segmented Ge detectors).
 Close collaboration with Ge. Merger between the two to go towards 1t.

• COBRA

– R&D with CdZnTe semi-conductor detectors (room-ish temperature). Very interesting potential with pixelated detectors. Main isotopes ¹¹⁶Cd and ¹³⁰Te

• CANDLES

 Undoped CaF₂ scintillator crystal detectors. Isotope: ⁴⁸Ca. Start with natural, look into possibilities of enrichment in the future

Experiment	Isotope	kg	T _{1/2} yr, 90% CL	m _v *, meV	Start-up timescale	Status
HM	⁷⁶ Ge	15	>1.9 10 ²⁵ 230-560 1990		finished	
KDHK claim	⁷⁶ Ge	15	(0.7-4.2) 10 ²⁵ (3σ)	150-920	1990	finished
NEMO 3	¹⁰⁰ Mo	7	2 10 ²⁴ (expect. 2010)	340-590	2003	running
CUORICINO	¹³⁰ Te	11	>3 10 ²⁴ (current)	260-610	2002	running
CUORE	¹³⁰ Te	210	1.3 10 ²⁶	40-92	2011	approved
GERDA, Phase I	⁷⁶ Ge	15	3 10 ²⁵	180-440	2009	approved
Phase II	⁷⁶ Ge	~31	2 10 ²⁶	70-170	2011	approved
EXO 200	¹³⁶ Xe	160	6.4 10 ²⁵	270-380	2009	approved
EXO 1t	¹³⁶ Xe	800	2 10 ²⁷	50-68	2015	R&D
SuperNEMO	⁸² Se/ ¹⁵⁰ Nd	100	1 10 ²⁶	45-110	2012	Design Study
COBRA	¹¹⁶ Cd	151	1.5 10 ²⁶	38-96	?	R&D
SNO+	¹⁵⁰ Nd	500	(1-5) 10 ²⁵	50-100 (?)	2012?	R&D

CUORE, GERDA and SuperNEMO are on the European roadmap for astro-particle physics (ASPERA)

* Matrix elements from MEDEX'07 or provided by experiments

Summary

- **Ονββ** is the only practical way to establish neutrino mass nature (Majorana vs Dirac) and understand if $\Delta L \neq 0$.
- Vibrant and rapidly growing field
- Results will come in from several x100kg experiments in near-ish future
 - Big potential for a major discovery
 - Necessary step to converge on 1-2 ton-scale detector technology(ies)

BACKUP

Topology detection may disentangle underlying physics mechanism

$0\nu\beta\beta$ experiment is about BKG suppression!

Phase space factor

Isotope	⁴⁸ Ca	⁷⁶ Ge	⁸² Se	⁹⁶ Zr	¹⁰⁰ Mo	¹¹⁶ Cd	¹³⁰ Te	¹³⁶ Xe	¹⁵⁰ Nd
${\cal G}^{0 m v}$	75.8	7.6	33.5	69.7	54.5	58.9	52.8	56.3	249
$\times 10^{-15}$									
yr ⁻¹									

LSM extension project. Plan to be ready in 2013.

