
Vectorization for
Intel® C++ & Fortran Compiler

Presenter: Georg Zitzlsberger

Date: 10-07-2015

1

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• Summary

Agenda

2

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Single Instruction Multiple Data (SIMD):

 Processing vector with a single operation

 Provides data level parallelism (DLP)

 Because of DLP more efficient than scalar processing

• Vector:

 Consists of more than one element

 Elements are of same scalar data types
(e.g. floats, integers, …)

• Vector length (VL): Elements of the vector

Vectorization

Scalar
Processing

Vector
Processing

A B

C

+

Ci

+

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

VL
3

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Evolution of SIMD for Intel Processors

Time

Goal:
8x peak FLOPs (FMA) over 4 generations!

2nd Generation

Intel® Core™ Processors

Intel® AVX (256 bit):

• 2x FP Throughput

• 2x Load Throughput

P
e
rf

o
rm

a
n
c
e
/C

o
re

3rd Generation

Intel® Core™ Processors

• Half-float support

• Random Numbers

4th Generation

Intel® Core™ Processors

Intel® AVX2 (256 bit):

• 2x FMA peak

• Gather Instructions

Present & Future:

Intel® MIC Architecture,
Intel® AVX-512:

• 512 bit Vectors

• 2x FP/Load/FMA

Since 1999:

128 bit Vectors
2010 2012 2013

Now &
Future

4

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Illustrations: Xi, Yi & results 32 bit integer

SIMD Types for Intel® Architecture II

AVX
Vector size: 256 bit
Data types:
• 8, 16, 32, 64 bit integer
• 32 and 64 bit float
VL: 4, 8, 16, 32

Intel® AVX-512 &
Intel® MIC Architecture
Vector size: 512 bit
Data types:
• 8, 16, 32, 64 bit integer
• 32 and 64 bit float
VL: 8, 16, 32, 64

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

255

X4

Y4

X4◦Y4

X3

Y3

X3◦Y3

X2

Y2

X2◦Y2

X1

Y1

X1◦Y1

0

X8

Y8

X8◦Y8

X7

Y7

X7◦Y7

X6

Y6

X6◦Y6

X5

Y5

X5◦Y5

X16

Y16

X16◦Y16

511

…

…

…

5

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• 2010: Initial version of Intel® AVX in 2nd generation Intel® Core™ processors:

 Double register size of SSE, twice as much vector elements (2x peak FLOP)

 Support for single- & double-precision FP

 Load/Store size increased from 128 bit to 256 bit!

• 2012: 3rd generation Intel® Core™ processor improvements:

 Non-deterministic random number generator

 Half-precision conversion (from/to single-precision)

• 2013: 4th generation Intel® Core™ processor improvements:

 Intel® AVX2 (with integer support)

 FMA (2x more peak FLOP with same vector length)

 Gather non adjacent memory locations

• Future: Intel® AVX-512

AVX Generations

6

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Basically same as Intel® AVX with following additions:

 Doubles width of integer vector instructions to 256 bits

 Floating point fused multiply add (FMA)

 Bit Manipulation Instructions (BMI)

 Gather instructions (scatter for the future)

 Any-to-any permutes

 Vector-vector shifts

Intel® AVX2

 Processor Family
Instruction

Set

Single Precision
FLOPs

Per Clock

Double Precision
FLOPs

Per Clock

Pre 2nd generation Intel® Core™ Processors SSE 4.2 8 4

2nd and 3rd generation
Intel® Core™ Processors

AVX 16 8

4th generation Intel® Core™ Processors AVX2 32 16

2x

4x

7

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Different versions of Intel® AVX-512:

• Intel® AVX-512 Foundation:

 Extension of AVX known instruction sets including mask registers

 Available in all products supporting Intel® AVX-512

Intel® AVX-512 Features I

Math Support

IEEE division
and square

root

DP FP
transcendental

primitives

New
transcendental

support
instructions

New Permutation
Primitives

Two source
shuffles

Compress &
expand

Bit Manipulation

Vector rotate

Universal
ternary logical

operation

New mask
instructions

8

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Intel® AVX-512 Vector Length Extension:

 Freely select the vector length (512 bit, 256 bit and 128 bit)

 Orthogonal extension but planned for future Intel® Xeon® processors only

• Intel® AVX-512 Byte/Word and Doubleword/Quadword:

 Two groups:

• 8 and 16 bit integers

• 32 and 64 bit integers & FP

 Planned for future Intel® Xeon® processors

• Intel® AVX-512 Conflict Detection:

 Check identical values inside a vector (for 32 or 64 bit integers)

 Used for finding colliding indexes (32 or 64 bit) before a gather-operation-scatter
sequence

 Likely to be available in future for both Intel® Xeon Phi™ coprocessors and
Intel® Xeon® processors

Intel® AVX-512 Features II

9

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Intel® AVX-512 Exponential & Reciprocal Instructions:

 Higher accuracy (28 bit) with HW based sqrt, reciprocal and exp function

 Likely only for future Intel® Xeon Phi™ coprocessors

• Intel® AVX-512 Prefetch Instructions:

 Manage data streams for higher throughput (incl. gather & scatter)

 Likely only for future Intel® Xeon Phi™ coprocessors

• More here:
https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Intel® AVX-512 Features III

10

https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions
https://software.intel.com/en-us/blogs/additional-avx-512-instructions

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Amount of turbo frequency achieved depends on:
Type of workload, number of active cores, estimated current & power
consumption, and processor temperature

• Due to workload dependency, separate AVX base & turbo frequencies will
be defined for 4th generation Intel® Core™ and Xeon® processors and later

* Intel® AVX refers to Intel® AVX, Intel® AVX2 or Intel® AVX-512

Intel® Turbo Boost Technology and
Intel® AVX*

A
V

X
/R

a
te

d
 T

u
rb

o

R

a
te

d
 T

u
rb

o

A
V

X
 T

u
rb

o

F
re

q
u

e
n

cy

A
V

X
/R

a
te

d
 B

a
se

R
a

te
d

 B
a

se

A
V

X
 B

a
se

Previous Generations
4th Generation Intel® Core™ and

later

11

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• Summary

Agenda

12

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Many Ways to Vectorize

Ease of use Compiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* 4.0 and Intel® Cilk™ Plus

13

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Auto-vectorization of Intel Compilers

..B1.2:

 vmovupd (%rsp,%rax,8), %ymm0

 vmovupd 32(%rsp,%rax,8), %ymm2

 vmovupd 64(%rsp,%rax,8), %ymm4

 vmovupd 96(%rsp,%rax,8), %ymm6

 vaddpd 8032(%rsp,%rax,8), %ymm2, %ymm3

 vaddpd 8000(%rsp,%rax,8), %ymm0, %ymm1

 vaddpd 8064(%rsp,%rax,8), %ymm4, %ymm5

 vaddpd 8096(%rsp,%rax,8), %ymm6, %ymm7

 vmovupd %ymm1, 16000(%rsp,%rax,8)

 vmovupd %ymm3, 16032(%rsp,%rax,8)

 vmovupd %ymm5, 16064(%rsp,%rax,8)

 vmovupd %ymm7, 16096(%rsp,%rax,8)

 addq $16, %rax

 cmpq $992, %rax

 jb ..B1.2

 ...

Intel® AVX

..B1.2:

 movaps (%rsp,%rax,8), %xmm0

 movaps 16(%rsp,%rax,8), %xmm1

 movaps 32(%rsp,%rax,8), %xmm2

 movaps 48(%rsp,%rax,8), %xmm3

 addpd 8000(%rsp,%rax,8), %xmm0

 addpd 8016(%rsp,%rax,8), %xmm1

 addpd 8032(%rsp,%rax,8), %xmm2

 addpd 8048(%rsp,%rax,8), %xmm3

 movaps %xmm0, 16000(%rsp,%rax,8)

 movaps %xmm1, 16016(%rsp,%rax,8)

 movaps %xmm2, 16032(%rsp,%rax,8)

 movaps %xmm3, 16048(%rsp,%rax,8)

 addq $8, %rax

 cmpq $1000, %rax

 jb ..B1.2

 ...

Intel® SSE4.2

void add(A, B, C)

double A[1000]; double B[1000]; double C[1000];

{

 int i;

 for (i = 0; i < 1000; i++)

 C[i] = A[i] + B[i];

}

subroutine add(A, B, C)

 real*8 A(1000), B(1000), C(1000)

 do i = 1, 1000

 C(i) = A(i) + B(i)

 end do

end

14

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Support of SIMD extensions for Intel processors:

SIMD Features I

SIMD Feature Description

ATOM_SSE4.2 May generate MOVBE instructions for Intel processors (depending on
setting of -minstruction or /Qinstruction). May also generate Intel®

SSE4.2, SSE3, SSE2 and SSE instructions for Intel processors. Optimizes for
Intel® Atom™ processors that support Intel® SSE4.2 and MOVBE
instructions.

SSE4.2 May generate Intel® SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

SSE4.1 May generate Intel® SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

ATOM_SSSE3

deprecated:
SSE3_ATOM &
SSSE3_ATOM

May generate MOVBE instructions for Intel processors (depending on
setting of -minstruction or /Qinstruction). May also generate Intel®

SSE3, SSE2, SSE and Intel SSSE3 instructions for Intel processors.
Optimizes for Intel® Atom™ processors that support Intel® SSE3 and MOVBE
instructions.

SSSE3 May generate Intel® SSE3, SSE2, SSE and Intel SSSE3.

SSE3 May generate Intel® SSE3, SSE2 and SSE.

SSE2 May generate Intel® SSE2 and SSE.

15

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Support of SIMD extensions for Intel processors (cont’d):

SIMD Features II

SIMD Feature Description

MIC-AVX512 May generate Intel® Advanced Vector Extensions 512 (Intel® AVX-512)
Foundation instructions, Intel® AVX-512 Conflict Detection instructions,
Intel® AVX-512 Exponential and Reciprocal instructions, Intel® AVX-512
Prefetch instructions for Intel® processors, and the instructions enabled
with CORE-AVX2. Optimizes for Intel® processors that support Intel® AVX-
512 instructions.

CORE-AVX2 May generate Intel® Advanced Vector Extensions 2 (Intel® AVX2), Intel® AVX,
SSE4.2, SSE4.1, SSE3, SSE2, SSE and Intel SSSE3 instructions.

CORE-AVX-I May generate Intel® Advanced Vector Extensions (Intel® AVX), including
instructions in 3rd generation Intel® Core™ processors, Intel® SSE4.2,
SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

AVX May generate Intel® Advanced Vector Extensions (Intel® AVX), SSE4.2,
SSE4.1, SSE3, SSE2, SSE and Intel SSSE3.

16

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Linux*, OS X*: -x<feature>, Windows*: /Qx<feature>

 Might enable Intel processor specific optimizations

 Processor-check added to “main” routine:
Application errors in case SIMD feature missing or non-Intel processor with
appropriate/informative message

• Linux*, OS X*: -ax<features>, Windows*: /Qax<features>

 Multiple code paths: baseline and optimized/processor-specific

 Optimized code paths for Intel processors defined by <features>

 Multiple SIMD features/paths possible, e.g.: -axSSE2,AVX

 Baseline code path defaults to –msse2 (/arch:sse2)

 The baseline code path can be modified by –m<feature> or –x<feature>
(/arch:<feature> or /Qx<feature>)

Basic Vectorization Switches I

17

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Linux*, OS X*: -m<feature>, Windows*: /arch:<feature>

 Neither check nor specific optimizations for Intel processors:
Application optimized for both Intel and non-Intel processors for selected SIMD
feature

 Missing check can cause application to fail in case extension not available

• Default for Linux*: -msse2, Windows*: /arch:sse2:

 Activated implicitly

 Implies the need for a target processor with at least Intel® SSE2

• Default for OS X*: -msse3 (IA-32), -mssse3 (Intel® 64)

• For 32 bit compilation, –mia32 (/arch:ia32) can be used in case target

processor does not support Intel® SSE2 (e.g. Intel® Pentium® 3 or older)

Basic Vectorization Switches II

18

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Special switch for Linux*, OS X*: -xHost, Windows*: /QxHost

 Compiler checks SIMD features of current host processor (where built on) and
makes use of latest SIMD feature available

 Code only executes on processors with same SIMD feature or later as on build
host

 As for -x<feature> or /Qx<feature>, if “main” routine is built with
–xHost or /QxHost the final executable only runs on Intel processors

Basic Vectorization Switches III

19

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Disable vectorization:

 Globally via switch:
Linux*, OS X*: -no-vec, Windows*: /Qvec-

 For a single loop:
C/C++: #pragma novector, Fortran: !DIR$ NOVECTOR

 Compiler still can use some SIMD features

• Using vectorization:

 Globally via switch (default for optimization level 2 and higher):
Linux*, OS X*: -vec, Windows*: /Qvec

 Enforce for a single loop (override compiler efficiency heuristic) if semantically
correct:
C/C++: #pragma vector always, Fortran: !DIR$ VECTOR ALWAYS

 Influence efficiency heuristics threshold:
Linux*, OS X*: -vec-threshold[n]
Windows*: /Qvec-threshold[[:]n]
n: 100 (default; only if profitable) … 0 (always)

Control Vectorization I

20

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Verify vectorization:

 Globally:
Linux*, OS X*: -opt-repot, Windows*: /Qopt-report

 Abort compilation if loop cannot be vectorized:
C/C++: #pragma vector always assert
Fortran: !DIR$ VECTOR ALWAYS ASSERT

• Advanced:

 Ignore vector dependencies (IVDEP):
C/C++: #pragma ivdep
Fortran: !DIR$ IVDEP

 “Enforce” vectorization:
C/C++: #pragma simd or #pragma omp simd
Fortran: !DIR$ SIMD or !$OMP SIMD

When used, vectorization can only be turned off with:
Linux*, OS X*: -no-vec –no-simd –qno-openmp-simd
Windows*: /Qvec- /Qsimd- /Qopenmp-simd-

Control Vectorization II

21

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• Summary

Agenda

22

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Assembler code inspection (Linux*, OS X*: -S, Windows*: /Fa):

 Most reliable way and gives all details of course

 Check for scalar/packed or (E)VEX encoded instructions:
Assembler listing contains source line numbers for easier navigation

• Using Intel® VTune™ Amplifier:

 Different events can be selected to measure use of vector units, e.g.
FP_COMP_OPS_EXE.SSE_PACKED_[SINGLE|DOUBLE]

 For Intel® MIC Architecture: Use metric Vectorization Intensity

• Difference method:

1. Compile and benchmark with -no-vec –no-simd –qno-openmp-simd or
/Qvec- /Qsimd- /Qopenmp-simd-, or on a loop by loop basis via

#pragma novector or!DIR$ NOVECTOR

2. Compile and benchmark with selected SIMD feature

3. Compare runtime differences

Validating Vectorization Success I

23

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Intel® Software Development Emulator:

 Emulate (future) Intel® Architecture Instruction Set Extensions (e.g. Intel® AVX-512,
Intel® MPX, …)

 Use the “mix histogramming tool” to check for instructions using vectors

 Also possible to debug the application while emulated

 Source:
https://software.intel.com/en-us/articles/intel-software-development-emulator

• Intel® Architecture Code Analyzer:

 Statically analyze the data dependency, throughput and latency of code snippets
(aka. kernels)

 Considers ideal front-end, out-of-order engine and memory hierarchy conditions

 Identifies binding of the kernel instructions to the processor ports & critical path

 Source:
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/

Validating Vectorization Success II

24

https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
https://software.intel.com/en-us/articles/intel-software-development-emulator
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer/

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Optimization report:

 Linux*, OS X*: -opt-report=<n>, Windows*: /Qopt-report:<n>
n: 0, …, 5 specifies level of detail; 2 is default (more later)

 Prints optimization report with vectorization analysis

 Also known as vectorization report for Intel® C++/Fortran Compiler before 15.0:
Linux*, OS X*: -vec-report=<n>, Windows*: /Qvec-report:<n>
Deprecated, don’t use anymore – use optimization report instead!

• Optimization report phase:

 Linux*, OS X*: -opt-report-phase=<p>,
Windows*: /Qopt-report-phase:<p>

 <p> is all by default; use vec for just the vectorization report

• Optimization report file:

 Linux*, OS X*: -opt-report-file=<f>, Windows*: /Qopt-report-file:<f>

 <f> can be stderr, stdout or a file (default: *.optrpt)

Validating Vectorization Success III

25

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Intel® Advisor XE 2016 (Vectorization Advisor)

Validating Vectorization Success IV

26

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example novec.f90:

Optimization Report Example

1: subroutine fd(y)

2: integer :: i

3: real, dimension(10), intent(inout) :: y

4: do i=2,10

5: y(i) = y(i-1) + 1

6: end do

7: end subroutine fd

$ ifort novec.f90 –opt-report=5

ifort: remark #10397: optimization reports are generated in *.optrpt

files in the output location

$ cat novec.optrpt

…

LOOP BEGIN at novec.f90(4,5)

 remark #15344: loop was not vectorized: vector dependence prevents

vectorization

 remark #15346: vector dependence: assumed FLOW dependence between y

line 5 and y line 5

 remark #25436: completely unrolled by 9

LOOP END

…

27

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• Summary

Agenda

28

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Most frequent reasons:

• Data dependence

• Alignment

• Unsupported loop structure

• Non-unit stride access

• Function calls/in-lining

• Non-vectorizable Mathematical functions

• Data types

• Control depencence

• Bit masking

…and much more!

Reasons for Vectorization Fails I

29

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

A loop can be vectorized if and only if there is no cyclic dependency chain
between the statements of the loop body!

• The theorem takes into account that certain semantic-preserving
reordering transformations can be applied
(e.g. loop distribution, loop fusion, etc.)

• The theorem assumes an “unlimited” vector length (VL).
In cases where VL is limited, loop carried dependencies might be ignored if
more than “VL” iterations are required to exist.
Thus in some cases vectorization for SSE or AVX might be still valid,
opposed to the theorem!

Example:
Although we have a cyclic dependency chain,
the loop can be vectorized for SSE or AVX in
case of VL being max. 3 times the data type
size of array A.

Key Theorem for Vectorization

DO I = 1, N

 A(I + 3) = A(I) + C

END DO

30

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Disambiguating memory locations of pointers in C99:
Linux*, OS X*: –std=c99, Windows*: /Qstd=c99

• Intel® C++ Compiler also allows this for other modes
(e.g. -std=c89, -std=c++0x, …), too - not standardized, though:
Linux*, OS X*: -restrict, Windows*: /Qrestrict

• Declaring pointers with keyword restrict asserts compiler that they only
reference individually assigned, non-overlapping memory areas

• Also true for any result of pointer arithmetic (e.g. ptr + 1 or ptr[1])

Examples:

Disambiguation Hints I

void scale(int *a, int *restrict b)

{

 for (int i = 0; i < 10000; i++) b[i] = z * a[i];

}

void mult(int a[][NUM], int b[restrict][NUM])

{ ... }
31

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Directives:

• #pragma ivdep (C/C++) or !DIR$ IVDEP (Fortran)

• #pragma simd (C/C++) or !DIR$ SIMD (Fortran)

For C/C++:

• Assume no aliasing at all (dangerous!):
Linux*, OS X*: -fno-alias, Windows*: /Oa

• Assume ISO C Standard aliasing rules:
Linux*, OS X*: -ansi-alias, Windows*: /Qansi-alias
Default with 15.0 and later but not with earlier versions!

• Turns on ANSI aliasing checker, too (thus recommended)

• No aliasing between function arguments:
Linux*, OS X*: -fargument-noalias, Windows*: /Qalias-args-

• No aliasing between function arguments and global storage:
Linux*, OS X*: -fargument-noalias-global, Windows*: N/A

Disambiguation Hints II

32

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

For Fortran:

• Assume no aliasing at all:
Linux*, OS X*: -fno-alias, Windows*: /Oa

• Assume Fortran Standard aliasing rules:
Linux*, OS X*: -ansi-alias, Windows*: /Qansi-alias

Opposed to C/C++ this is default since ever!

• No aliasing of Cray* pointers:
Linux*, OS X*: -safe-cray-ptr, Windows*: /Qsafe-cray-ptr

Disambiguation Hints III

33

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Aligned heap memory allocation by intrinsic/library call:

 void* _mm_malloc(int size, int base)

 Linux*, OS X* only:
int posix_memaligned(void **p, size_t base, size_t size)

• #pragma vector [aligned|unaligned]

 Only for Intel Compiler

 Asserts compiler that aligned memory operations can be used for all data
accesses in loop following directive

 Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

Alignment Hints for C/C++ I

34

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Align attribute for variable declarations:

 Linux*, OS X*, Windows*: __declspec(align(base)) <var>

 Linux*, OS X*: <var> __attribute__((aligned(base)))

 Portability caveat:
__declspec is not known for GCC and __attribute__ not for Microsoft Visual

Studio*!

• Hint that start address of an array is aligned (Intel Compiler only):
__assume_aligned(<array>, base)

Alignment Hints for C/C++ II

35

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• !DIR$ VECTOR [ALIGNED|UNALIGNED]

 Asserts compiler that aligned memory operations can be used for all data
accesses in loop following directive

 Use with care:
The assertion must be satisfied for all(!) data accesses in the loop!

• Hint that an entity in memory is aligned:
!DIR$ ASSUME_ALIGNED address1:base [, address2:base] ...

• Align variables:
!DIR$ ATTRIBUTES ALIGN: base :: variable

• Align data items globally:
Linux*, OS X*: -align <a>, Windows*: /align:<a>

 <a> can be array<n>byte with <n> defining the alignment for arrays

 Other values for <a> are also possible, e.g.: [no]commons, [no]records, …

All are Intel® Fortran Compiler only directives and options!

Alignment Hints for Fortran

36

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Compiled both cases using –xAVX:

More efficient if aligned:

Alignment Impact: Example

void mult(double* a, double* b, double* c)

{

 int i;

#pragma vector aligned

 for (i = 0; i < N; i++)

 c[i] = a[i] * b[i];

}

..B2.2:

 vmovupd (%rdi,%rax,8), %ymm0

 vmulpd (%rsi,%rax,8), %ymm0, %ymm1

 vmovntpd %ymm1, (%rdx,%rax,8)

 addq $4, %rax

 cmpq $1000000, %rax

 jb ..B2.2

void mult(double* a, double* b, double* c)

{

 int i;

#pragma vector unaligned

 for (i = 0; i < N; i++)

 c[i] = a[i] * b[i];

}

..B2.2:

 vmovupd (%rdi,%rax,8), %xmm0

 vmovupd (%rsi,%rax,8), %xmm1

 vinsertf128 $1, 16(%rsi,%rax,8), %ymm1, %ymm3

 vinsertf128 $1, 16(%rdi,%rax,8), %ymm0, %ymm2

 vmulpd %ymm3, %ymm2, %ymm4

 vmovupd %xmm4, (%rdx,%rax,8)

 vextractf128 $1, %ymm4, 16(%rdx,%rax,8)

 addq $4, %rax

 cmpq $1000000, %rax

 jb ..B2.2

37

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Non-consecutive memory locations are being accessed in the loop

• Vectorization works best with contiguous memory accesses

• Vectorization still be possible for non-contiguous memory access, but…

 Data arrangement operations might be too expensive
(e.g. access pattern linear/regular)

 Vectorization report issued when too expensive:
Loop was not vectorized: vectorization possible but seems inefficient

For Fortran: Use CONTIGUOUS attribute, if possible!

• Examples:

Non-Unit Stride Access

for(i = 0; i <= MAX; i++) {

 for(j = 0; j <= MAX; j++) {

 D[i][j] += 1; // Unit stride

 D[j][i] += 1; // Non-unit stride but linear

 A[B[j]] += 1; // Non-unit stride (scatter)

 }

}

38

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Calls to most mathematical functions in a loop body can be vectorized
using “Short Vector Math Library”:

 Short Vector Math Library (libsvml) provides vectorized implementations of
different mathematical functions

 Optimized for latency compared to the VML library component of Intel® MKL
which realizes same functionality but which is optimized for throughput

• Routines in libsvml can also be called explicitly, using intrinsics
(see manual)

• These mathematical functions are currently supported:

Vectorizable Mathematical Functions

acos acosh asin asinh atan atan2 atanh cbrt

ceil cos cosh erf erfc erfinv exp exp2

fabs floor fmax fmin log log10 log2 pow

round sin sinh sqrt tan tanh trunc

39

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• Summary

Agenda

40

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Cilk™ Plus

Ease of use Compiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Compiler:
OpenMP* 4.0 and Intel® Cilk™ Plus

41

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Cilk™ Plus

Simple Keywords

Set of keywords, for expression of
task parallelism:

cilk_spawn

cilk_sync

cilk_for

Array Notation
Provide data parallelism for sections of arrays

or whole arrays

mask[:] = a[:] < b[:] ? -1 : 1;

SIMD-enabled Functions
Define actions that can be applied to

whole or parts of arrays or scalars

Execution Parameters
Runtime system APIs, Environment variables, pragmas

Task Level Parallelism

Data Level Parallelism

Reducers

(Hyper-objects)
Reliable access to nonlocal variables without

races

cilk::reducer_opadd<int> sum(3);

42

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Cilk™ Plus

Simple Keywords

Set of keywords, for expression of
task parallelism:

cilk_spawn

cilk_sync

cilk_for

Array Notation
Provide data parallelism for sections of arrays

or whole arrays

mask[:] = a[:] < b[:] ? -1 : 1;

SIMD-enabled Functions
Define actions that can be applied to

whole or parts of arrays or scalars

Execution Parameters
Runtime system APIs, Environment variables, pragmas

Task Level Parallelism

Data Level Parallelism

Reducers

(Hyper-objects)
Reliable access to nonlocal variables without

races

cilk::reducer_opadd<int> sum(3);

43

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

C/C++: #pragma simd [clause [,clause]…]

Fortran: !DIR$ SIMD [clause [,clause]…]

Without any clause, the directive “enforces” vectorization of the loop, ignoring
all dependencies (even if they are proved!)

Example:

Without SIMD directive, vectorization likely fails since there are too many
pointer references to do a run-time check for overlapping (compiler heuristic).
The compiler won’t create multiple versions here.

Using the directive asserts the compiler that none of the pointers are
overlapping.

Intel® Cilk™ Plus Pragma/Directive I

void addfl(float *a, float *b, float *c, float *d, float *e, int n)

{

#pragma simd

 for(int i = 0; i < n; i++)

 a[i] = a[i] + b[i] + c[i] + d[i] + e[i];

}

44

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• vectorlength(n1 [,n2] …)
n1, n2, … must be 2, 4, 8, …: The compiler can assume a safe vectorization
for a vector length of n1, n2, …; alternative: vectorlengthfor(type)

• private(v1, v2, …)

Variables private to each iteration; supersets (extensions):

 firstprivate(…): initial value is broadcast to all private instances

 lastprivate(…): last value is copied out from the last iteration instance

• linear(v1:step1, v2:step2, …)
For every iteration of original scalar loop v1 is incremented by step1, …
etc. Therefore it is incremented by step1 * VL for the vectorized loop.

• reduction(operator:v1, v2, …)
Variables v1, v2, … etc. are reduction variables for operation operator

• [no]assert
Warning (default: noassert) or error with failed vectorization

#pragma simd Clauses for C/C++

45

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• VECTORLENGTH(n1 [,n2] …)
n1, n2, … must be 2, 4, 8, …: The compiler can assume a safe vectorization
for a vector length of n1, n2, …

• PRIVATE(v1, v2, …)

Variables private to each iteration; supersets (extensions):

 FIRSTPRIVATE(…): initial value is broadcast to all private instances

 LASTPRIVATE(…): last value is copied out from the last iteration instance

• LINEAR(v1:step1, v2:step2, …)
For every iteration of original scalar loop v1 is incremented by step1, …
etc. Therefore it is incremented by step1 * VL for the vectorized loop.

• REDUCTION(operator:v1, v2, …)
Variables v1, v2, … etc. are reduction variables for operation operator

• [NO]ASSERT
Warning (default: NOASSERT) or error with failed vectorization

!DIR$ SIMD Clauses for Fortran

46

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Problem:

“Enforced” vectorization still fails

with the following message:

loop was not vectorized: conditional assignment to a scalar

loop was not vectorized with "simd"

Solution:

Clarify that scalar is a reduction with
operator +.

Attention:

Same as for OpenMP* reduction variables can only be associated to one
operator each!

!DIR$ SIMD Example for Fortran

!DIR$ SIMD

do i = 1,n

 if (a(i) .GT. 0) then

 sum2 = sum2 + a(i) * b(i)

 else

 sum2 = sum2 + a(i)

 endif

enddo

!DIR$ SIMD REDUCTION(+:sum2)

do i = 1,n

 if (a(i) .GT. 0) then

 sum2 = sum2 + a(i) * b(i)

 else

 sum2 = sum2 + a(i)

 endif

enddo

47

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Differences between IVDEP & SIMD pragmas/directives:

• #pragma ivdep (C/C++) or !DIR$ IVDEP (Fortran)

 Ignore vector dependencies (IVDEP): Ignore assumed but not proven
dependencies for a loop

 Example:

• #pragma simd (C/C++) or !DIR$ SIMD (Fortran):

 Aggressive version of IVDEP: Ignores all dependencies inside a loop and ignore
efficiency heursitic

 It’s an imperative that forces the compiler try everything to vectorize

 Attention: This can break semantically correct code!
However, it can vectorize code legally in some cases that wouldn’t be possible
otherwise!

IVDEP vs. SIMD Pragma/Directives

void foo(int *a, int k, int c, int m)

{

#pragma ivdep

 for (int i = 0; i < m; i++)

 a[i] = a[i + k] * c;

}

48

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Cilk™ Plus

Simple Keywords

Set of keywords, for expression of
task parallelism:

cilk_spawn

cilk_sync

cilk_for

Array Notation
Provide data parallelism for sections of arrays

or whole arrays

mask[:] = a[:] < b[:] ? -1 : 1;

SIMD-enabled Functions
Define actions that can be applied to

whole or parts of arrays or scalars

Execution Parameters
Runtime system APIs, Environment variables, pragmas

Task Level Parallelism

Data Level Parallelism

Reducers

(Hyper-objects)
Reliable access to nonlocal variables without

races

cilk::reducer_opadd<int> sum(3);

49

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD-Enabled Functions Syntax

Windows*:
__declspec(vector([clause [,clause]…]))
 function definition or declaration

Linux*/OS* X:
__attribute__((vector([clause [,clause]…])))
 function definition or declaration

• C/C++ only

• Intent:
Express work as scalar operations (kernel) and let compiler create a vector
version of it. The size of vectors can be specified at compile time (SSE,
AVX, …) which makes it portable!

• Remember:
Both the function definition as well as the function declaration (header file)
need to be specified like this!

 50

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD-Enabled Functions Clauses

• processor(cpuid)

cpuid for which (Intel) processor to create a vector version

• vectorlength(len)

len must be power of 2: Allow as many elements per argument

• linear(v1:step1, v2:step2, …)
Defines v1, v2, … to be private to SIMD lane and to have linear (step1,
step2, …) relationship when used in context of a loop

• uniform(a1, a2, …)
Arguments a1, a2, … etc. are not treated as vectors (constant values across
SIMD lanes)

• [no]mask: SIMD-enabled function called only inside branches (masked) or
never (not masked)

Intrinsic also available: __intel_simd_lane():
Return the SIMD lane with range: [0:vector length – 1]

51

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD-Enabled Functions

Write a function for one element and add __declspec(vector):

Call the scalar version:

Call scalar version via SIMD loop:

Call it with array notations:

__declspec(vector)

float foo(float a, float b, float c, float d)

{

 return a * b + c * d;

}

#pragma simd

for(i = 0; i < n; i++) {

 A[i] = foo(B[i], C[i], D[i], E[i]);

}

A[:] = foo(B[:], C[:], D[:], E[:]);

e = foo(a, b, c, d);

52

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD-Enabled Functions: Invocation

Construct Example Semantics

Standard for
loop

for (j = 0; j < N; j++) {

 a[j] = my_simdf(b[j]);

}

Single thread,
maybe auto-
vectorizable

#pragma simd #pragma simd

for (j = 0; j < N; j++) {

 a[j] = my_simdf(b[j]);

}

Single thread,
vectorized; use the
appropriate vector
version

Array notation a[:] = my_simdf(b[:]); Single thread,
vectorized

OpenMP* 4.0 #pragma omp parallel for simd

for (j = 0; j < N; j++) {

 a[j] = my_simdf(b[j]);

}

Multi-threaded,
vectorized

__declspec(vector)float my_simdf (float b) { … }

53

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Cilk™ Plus

Simple Keywords

Set of keywords, for expression of
task parallelism:

cilk_spawn

cilk_sync

cilk_for

Array Notation
Provide data parallelism for sections of arrays

or whole arrays

mask[:] = a[:] < b[:] ? -1 : 1;

SIMD-enabled Functions
Define actions that can be applied to

whole or parts of arrays or scalars

Execution Parameters
Runtime system APIs, Environment variables, pragmas

Task Level Parallelism

Data Level Parallelism

Reducers

(Hyper-objects)
Reliable access to nonlocal variables without

races

cilk::reducer_opadd<int> sum(3);

54

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• An extension to C/C++ only

• Perform operations on sections of arrays in parallel

• Example:

• Well suited for code that:

 Performs per-element operations on arrays

 Without an implied order between them (aliasing is ignored)

 With an intent to execute in vector instructions

Array Notation Extension: Syntax I

for(i = 0; i < …; i++)

 A[i] = B[i] + C[i];
A[:] = B[:] + C[:];

Not exactly the same: Aliasing is ignored by Array Notations!

55

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Array Notation Extension: Syntax II

• Syntax:

 Use a “:” for all elements (if size is known)

 “length” specifies number of elements of subset

 “stride”: distance between elements for subset

A[:]

A[start_index : length]

A[start_index : length : stride]

A[0:N]

A[0] A[1] A[2] A[N-1]

Explicit Data Parallelism Based on C/C++ Arrays

…

56

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Array Notation Extension: Example I

Accessing a section of an array:

 float a[10], b[6];

…

// allocate *b

…

b[:] = a[2:6];

…

0 1 2 3 4 5 6 7 8 9 a:

2 3 4 5 6 7 b:

57

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Array Notation Extension: Example II

Section of 2D array:

a:

1

2

…

1 2 … b:

float a[10][10], *b;

…

// allocate *b

…

b[0:10] = a[:][5];

…

58

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Array Notation Extension: Example III

Strided section of an array:

0 1 2 3 4 5 6 7 8 9 a:

0 2 4 b:

float a[10], *b;

…

// allocate *b

…

b[0:3] = a[0:3:2];

…

59

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Array Notation Extension: Operators

Most C/C++ operators are available for array sections:
+, -, *, /, %, <, ==, !=, >, |, &, ^, &&, ||, ! , - (unary), + (unary), ++,
--, +=, -=, *=, /=, * (pointer de-referencing)

Examples:

• Operators are implicitly mapped to all elements of the array section
operands.

• Operations on different elements can be executed in parallel without any
ordering constraints.

• Array operands must have the same rank and size.

• Scalar operands are automatically expanded.

a[:] * b[:] // element-wise multiplication

a[3:2][3:2] + b[5:2][5:2] // matrix addition

a[0:4][1:2] + b[1:2][0:4] // error, different rank sizes

a[0:4][1:2] + c // adds scalar c to array section

60

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Array Notation Extension: Reductions

Combine array section elements using a predefined operator, or a user function:

Other reductions (list not exhaustive):

Much more! Take a look at the specification:
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus
_lang_spec_1.2.htm

int a[] = {1,2,3,4};

sum = __sec_reduce_add(a[:]); // sum is 10

res = __sec_reduce(0, a[:], func);

 // apply function func to all

 // elements in a[], initial value is 0

int func(int arg1, int arg2)

{

 return arg1 + arg2;

}

 __sec_reduce_mul, __sec_reduce_all_zero,

__sec_reduce_all_nonzero, __sec_reduce_any_nonzero,

__sec_reduce_max, __sec_reduce_min,

__sec_reduce_max_ind, __sec_reduce_min_ind

61

https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Serial version:

Array Notation version:

Array Notation Extension: Example I

float dot_product(unsigned int size, float A[size], float B[size])

{

 int i;

 float dp = 0.0f;

 for (i=0; i<size; i++) {

 dp += A[i] * B[i];

 }

 return dp;

}

float dot_product(unsigned int size, float A[size], float B[size])

{

 // A[:] can also be written as A[0:size]

 return __sec_reduce_add(A[:] * B[:]);

}

62

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The following compilers support Intel® Cilk™ Plus:

- GNU* GCC 4.9:

- Exception: _cilk_for (Thread Level Parallelism) which will be added with
GCC 5.0

- Enable with -fcilkplus

- clang/LLVM 3.5:

- Not official yet but development branch exists: http://cilkplus.github.io/

- Enable with –fcilkplus

- Intel® C++/Fortran Compiler:
Beginning with 12.0; newer features added over time (see Release
Notes)

Intel® Cilk™ Plus
Compilers

63

http://cilkplus.github.io/
http://cilkplus.github.io/

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction to SIMD for Intel® Architecture

• Compiler & Vectorization

• Validating Vectorization Success

• Reasons for Vectorization Fails

• Intel® Cilk™ Plus

• Summary

Agenda

64

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Intel® C++ Compiler and Intel® Fortran Compiler provide sophisticated and
flexible support for vectorization

• They also provide a rich set of reporting features that help verifying
vectorization and optimization in general

• Directives and compiler switches permit fine-tuning for vectorization

• Vectorization can even be enforced for certain cases where language
standards are too restrictive

• Understanding of concepts like dependency and alignment is required to
take advantage from SIMD features

• Intel® C++/Fortran Compiler can create multi-version code to address a
broad range of processor generations, Intel and non-Intel processors and
individually exploiting their feature set

Summary

65

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Aart Bik: “The Software Vectorization Handbook”
http://www.intel.com/intelpress/sum_vmmx.htm

• Randy Allen, Ken Kennedy: “Optimizing Compilers for
Modern Architectures: A Dependence-based Approach”

• Steven S. Muchnik, “Advanced Compiler Design and
Implementation”

• Intel Software Forums, Knowledge Base, White Papers,
Tools Support (see http://software.intel.com)
Sample Articles:

 http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-
c-compilers/

 http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/

 http://software.intel.com/en-us/articles/performance-tools-for-software-
developers-intel-compiler-options-for-sse-generation-and-processor-specific-
optimizations/

References

66

http://www.intel.com/intelpress/sum_vmmx.htm
http://www.intel.com/intelpress/sum_vmmx.htm
http://software.intel.com/
http://software.intel.com/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/
http://software.intel.com/en-us/articles/performance-tools-for-software-developers-intel-compiler-options-for-sse-generation-and-processor-specific-optimizations/

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Thank you!

67

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

68

