

HPC codes modernization using vector and threading parallelism – part 2 (tools)

Zakhar A. Matveev, PhD,

Intel Russia, Intel Software and Services Group

May' 2015

Code modernization: Intel® Parallel Studio XE 2016 Beta

Intel[®] Parallel Studio XE

Faster code faster!

Vectorizing **Compiler** Squeeze all the performance out of the latest instruction set

Threaded Performance Libraries Pre-vectorized, pre-threaded, pre-optimized

Vectorization Optimization and Thread Prototyping Data driven design tools help you vectorize & thread effectively

High Level **Parallel Models** Productive solutions for thread, process & vector parallelism

Parallel Performance **Profilers** Quickly discover bottlenecks and tune for high performance

Threading **Inspector** Find and debug non-deterministic threading errors

Download Today

Google: "Intel Parallel Studio 2016"

Or go directly to: <u>https:</u> <u>//software.intel.com</u> <u>/en-us/articles/</u> <u>intel-parallel-studio-</u> <u>xe-2016-beta</u>

Intel[®] Parallel Studio XE 2016 Suites

Vectorization – Boost Performance By Utilizing Vector Instructions / Units

 Intel[®] Advisor XE - Vectorization Advisor identifies new vectorization opportunities as well as improvements to existing vectorization and highlights them in your code. It makes actionable coding recommendations to boost performance and estimates the speedup.

Scalable MPI Analysis – Fast & Lightweight Analysis for 32K+ Ranks

 Intel[®] Trace Analyzer and Collector add *MPI Performance Snapshot* feature for easy to use, scalable MPI statistics collection and analysis of large MPI jobs to identify areas for improvement

Big Data Analytics – Easily Build IA Optimized Data Analytics Application

 Intel[®] Data Analytics Acceleration Library (Intel[®] DAAL) will help data scientists speed through big data challenges with optimized IA functions

Standards – Scaling Development Efforts Forward

 Supporting the evolution of industry standards of OpenMP*, MPI, Fortran and C++ Intel[®] Compilers & performance libraries

Free Intel[®] Software Development Tools:

https://software.intel.com/en-us/qualify-for-free-software

Free Software Tools

Supporting qualified students, educators, academic researchers and open source contributors

Free Intel® Software Development Tools for:

Academic Researcher > For unfunded research (research not funded by grants).

Student > For current students at degree-granting institutions.

Educator > For use in teaching curriculum.

Open Source Contributor > For developers actively contributing to open source projects.

Beta 2016 program : Call to Action

Participate in the Beta Program today!

- Register at bit.ly/psxe2016beta
- Or simply send e-mail to vector_advisor@intel.com

Submit Feedback via Intel® Premier Support

Tell us about your experiences using the Intel® Parallel Studio XE 2016 Beta

Coming in 16.x

Intel[®] Advisor XE

Vectorization Optimization and Thread Prototyping

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

inte

SIMD Programming Challenges

LLNL (Hornung, Keasler, 2013):

"Typical codes get less than 5% of their FP instructions SIMD-ized... multi-physics codes - have thousands of small loops, which are all important"

- Vectorization productivity problem: "thousands of loops"
- Too much raw info (static and dynamic) to drive informed code modernization **decisions**
 - Where to vectorize?
 - How to get more benefit from vectorization
- Demand for extensive data layout re-organizations

Developers need an assistant tool to get applications vectorized faster, with higher efficiency and confidence

"Vectorization Advisor" – Advisor XE

1. "All the data you need in one place"

Leverages **Intel Compiler** opt-report+ and **dynamic profile**. Support for other compilers, C, C++, Fortran, for MPI env.

2. Detects "hot" un-vectorized or "under vectorized" loops.

Identifies what is blocking efficient vectorization, where to add it

3. Identify performance penalties and recommend fixes

Explicit **advices** *with "true intelligence", covering OpenMP4.x.*

4. Memory layout analysis

5. Increase the confidence that vectorization is safe

Elapsed time: 3,22s 🛽 🖉 Vec	torized	🖲 Not Vectorized 🖉	FILTER: All M	odules		•	All Si	ources	•				C
				Vectoria	red Loops			«					
Loops		Vector Issues A	Loop Type	Vecto	Efficiency	Est.	Ve	Co.	Why No Vect	torization?		Self Time	
a> [™] [loop in fsOutputVTK3D .	. 🗖		Scalar				7	17	inner loop	throttling	preven	0,000s I	
⇒ 🖞 [loop in fGetSpeedSite at			Scalar				17		loop contr				
E [loop in fGetEquilibrium .	. 🗉		Vectorized: Expand	AVX	~56%	2,24	4	2,24	11111			0,550s	
⊳ ⁽] [loop in fPropagationSw.	. 7		Scalar				17					0,050s 0	
∃ [loop in fGetOneMassSit .	. 🗖	9 1 Ineffective peel	Vectorized: Collapse	AVX	~3 <mark>5%</mark>	2,79	8	2,79				0,030s I	
⇒ ⁽¹⁾ [loop in fGetOneMass	. 🗖		Peeled									0,020s1	
↓ U [loop in fGetOneMass]	. 🗖		Vectorized (Body)	AVX			8	2,79				0,010s l	
a> (Iloop in fGetOneMass	. 🔳		Remainder									n/a	
0 [loop in fCollisionBGK a.		♀ 1 Data type con	Scalar						loop with	function	call not	0,020s1	
Iloop in fCollisionBGK at.				AVX	~100%	2.05	2	2,05				0.020s1	
[loop in fPropagationSw.		♀ 1 High vector reg		AVX	~65%	2.59	4	2,59				0.010sl	
Iloop in fGetOneDirecSp.				AVX	~37%	2.97	8	2,97				0.010sl	
		III III				-4-1							
	mBGK		ecommendations	rcompin	er Diagnostic Det	ails		T	otal Time 9	6 Loo	%	Traits	_
File: lbpBGK.cpp:836 fCollisio				rcompin	er Diagnostic Det	ails							
Line			Source	Compin	er Diagnostic Det	ails		Т	otal Time 9	6 Loo	%	Traits	
Line O [Scalar loo	p in f	CollisionBGK at 1b	Source pBGK.cpp:836]	- '				1	otal Time 9	6 Loo	%	Traits	
Line O [Scalar loo Loop with	p in f instr	uctions using AVX	Source pBGK.cpp:836] registers. Not v	- '			ion	1	otal Time 9	6 Loo	%	Traits	
Line O [Scalar loo Loop with No loop t	p in f instr ransfo	uctions using AVX rmations were appl	Source pBGK.cpp:836] registers. Not v ied	- '			ion (1	otal Time 9	6 Loo	%	Traits	
Line O [Scalar loo Loop with No loop t 137 il =	p in f instr ransfo : (i *	uctions using AVX rmations were appl Ymax + j) * Zmax ·	Source pBGK.cpp:836] registers. Not v ied + k;	ectoriz			ion	1		6 Loo	%	Traits	
Line O [Scalar loo Loop with No loop t 137 il = 138 fGet	p in f instr ransfo : (i * :Speed:	uctions using AVX rmations were appl Ymax + j) * Zmax - Site(sitespeed, al)	Source pBGK.cpp:836] registers. Not v ied + k;	ectoriz			ion	1	otal Time 9 0,648s 🛙	6 Loo	%	Traits	
Line	p in f instr ransfo : (i * :Speed: bphi[:	uctions using AVX rmations were appl Ymax + j) * Zmax - Site(sitespeed, &1) 1] != 11) {	Source pBGK.cpp:836] registers. Not v ied + k; f[il*lbsitelengt	ectoriz			ion	1	0,648s 🛙			Traits	
Line	p in f instr ransfo : (i * :Speed: bphi[: pr(11=	uctions using AVX rmations were appl Ymax + j) * Zmax - Site(sitespeed, sl) il] != 11) { D; 11<3*lbsy.nf; 1	Source pBGK.cpp:836] registers. Not v ied + k; of[il*lbsitelengt L++)	ectoriz	ed: loop wit?		ion	1		6 Loo		Traits	
Line	p in f instr ransfo : (i * :Speed: bphi[: or(11=0 (Rema	uctions using AVX rmations were appl Ymax + j) * Zmax - Site(sitespeed, all il] != 11) { J; 11<3*1bsy.nf; 1 inder) loop in fCo	Source pBGK.cpp:836] registers. Not v ied + k; of[il*lbsitelengt L++) llisionBGK at lb;	ectoriz h]); pBGK.cp	ed: loop with		ion	1	0,648s 🛙			Traits	
Line C [Scalar loo Loop with No loop t 33 fdet 33 fdet 39 if (40 fd W [Vectorized Vectorized	p in f instr ransfo : (i * :Speed: bphi[: pr(11= (Rema d AVX	uctions using AVX rmations were appl Ymax + j) * Zmax - Site(sitespeed, ≪ il] != 11) { 1; 11<3*lbsy.nf; 1 inder) loop in fCo Remainder Loop pro	Source pBGK.cpp:836] registers. Not v ied bf[il*lbsitelengt I++) llisionBGK at lb cessing Float64	ectoriz h]); pBGK.cp	ed: loop with		ion	1	0,648s 🛙			Traits	
Line O [Scalar loo Loop with No loop t 137 il = 138 fGet 139 if() 40 C (Vectorized Vectorized No loop t	p in f instr ransfo : (i * :Speed: :Speed: :bphi[: or(11=) (Rema d AVX ransfo	uctions using AVX rmations were appl Ymax + j) * Zmax - Site(sitespeed, sll 1] != 11) { 1; 11<3*lbsy.nf; 1] inder) loop in fCo Remainder Loop pro rmations were appl	Source pBGK.cpp:836] registers.Not v ied + k; of[il*lbsitelengt (++) llisionBGK at lb; ccessing Float64 ied	ectoriz h]); pBGK.cp data ty	ed: loop with		ion (1	0,648s 🛙			Traits	
Line (Scalar loo Loop with No loop t 137 il = 138 fGet 139 if (I 40 Creation of the second Vectorize No loop t (Not execut	p in f instr ransfo : (i * Speed: bphi[: (Rema d AVX ransfo ed loo	uctions using AVX rmations were appl Ymax + j) * Zmax - Site(sitespeed, ≪ il] != 11) { 1; 11<3*lbsy.nf; 1 inder) loop in fCo Remainder Loop pro	Source pBGK.cpp:836] registers. Not v id + k; of[il*lbsitelengt L++) llisionBGK at lb; cessing Float64 ied * at lbpBGK.cpp:8	ectoriz h]); pBGK.cp data ty 40]	ed: loop with p:840] pe(s)	1 funct		1	0,648s 🛙			Traits	
Line (Scalar loo Loop with No loop t 37 il = 38 fGet 39 if (I 40 C contained Vectorize No loop t (Not execut	p in f instr ransfo Speed: Speed: (Rema d AVX ransfo ed loco d AVX	uctions using AVX rmations were appl Ymax + j) * Zmax - Site(sitespeed, sll ll] != 11) { p: Hc3/llegy.nf; 1 inder) loop in fCo Remainder Loop proc rmations were appl p in fCollisionBGR Loop processing Fl	Source pBGK.cpp:836] registers. Not v id + k; of[il*lbsitelengt L++) llisionBGK at lb; cessing Float64 ied * at lbpBGK.cpp:8	ectoriz h]); pBGK.cp data ty 40]	ed: loop with p:840] pe(s)	1 funct		1	0,648s 🛙			Traits	
Line C [Scalar loo Loop with No loop t 37 il = 38 ffet 39 if (40 for a state of the stat	p in f instr ransfo : (i * :Speed: bphi[: c(Rema d AVX ransfo ed loo d AVX unroll	uctions using AVX rmations were appl Ymax + j) * Zmax - Site(sitespeed, sll ll] != 11) { p: Hc3/llegy.nf; 1 inder) loop in fCo Remainder Loop proc rmations were appl p in fCollisionBGR Loop processing Fl	Source pBGK.cpp:836] registers. Not v ied + k; of[il*lbeitelengt ++) llisionBGK at lb cessing Float64 ied i at lbpBGK.cpp:8 oat64 dat type(ectoriz h]); pBGK.cp BGK.cp 40] s) havi	ed: loop with p:840] pe(s)	1 funct		1	0,648s 🛙			Traits	
Line	p in f instr ransfo : (i * Speed: bphi[: (Rema d AVX ransfo ed loo d AVX unroll ed loo	uctions using AVX rmations were appl Ymax + j) * Zmax : Site(sitespeed, sll il] != 11) { j: ll Silesynf; l inder) loop in fCo Remainder Loop pro rmations were appl p in fCollisionBGW Loop processing Fl ed by 4	Source pBGK.cpp:836] registers.Not v ied + k; f[11*lbsitelengt LisionBGK at lb cessing Float64 ied i at lbpBGK.cpp:8 oat64 data type (' at lbpBGK.cpp:8	ectoriz h]); pBGK.cp BGK.cp 40] s) havi	ed: loop with p:840] pe(s)	1 funct		1	0,648s 🛙			Traits	
Line C [Scalar loo Loop with No loop t 37 il - 38 ffeet 39 if(l 40 feet Vectorized Vectorized Vectorized Vectorized Vectorized Vectorized Loop was C [Not execut Scalar Re	p in f instr ransfo : (i * : (i * : (Rema d AVX ransfo ed loo d AVX unroll ed loo mainde	uctions using AVX rmations were appl Ymax + j) * Zmax -: Site(sitespeed, sll il] != 11) { ; !! lbay.nf; l<br inder) loop in fCo Remainder Loop pro rmations were appl p in fCollisionBGR Loop processing Fl d by 4 p in fCollisionBGR	Source pBGK.cpp:836] registers. Not v ied * k; of[il*lbaitelengt llisionBGK at lbp cessing Float64 ied at lbpBGK.cpp:8 ized	ectoriz h]); pBGK.cp BGK.cp 40] s) havi	ed: loop with p:840] pe(s)	1 funct		1	0,648s 🛙			Traits	
© [Scalar loo Loop with No loop t 337 il = 338 fGet 339 if(] 340 □ fct Wectorized Vectorized Vectorize No loop t © [Not execut Scalar Re	p in f instr ransfo Speed: Speed: (Rema d AVX ransfo ed loo d AVX unroll ed loo mainde ransfo	uctions using AVX rmations were appl Ymax + j) * Zmax -: Site(sitespeed, sll 1] != 11) { 11(3)bay.nf; l 11(3)bay.nf; l 11(3)bay.nf; l 11(3)bay.nf; l 11(3)bay.nf; l 10(3)bay.nf; l	Source pBGK.cpp:836] registers.Not v ied * k; of[il*lbsitelengt L++) llisionBGK at lbp cessing Float64 ied at lbpBGK.cpp:8 ized ied	ectoriz h]); pBGK.cp BGK.cp 40] 40] 40]	ed: loop with p:840] pe(s) ng Inserts op	1 funct	ns	cal	0,648s 🛙			Traits	e C
Line	p in f instr ransfo Speed: Speed: (Rema (Rema d AVX ransfo ed loo d AVX unroll ed loo mainde ransfo inter:	uctions using AVX rmations were appl Ymax + j) * Zmax -: Site(sitespeed, sll 11] != 11) { 11:3*1bay.nf; l: 11:3*1bay.nf; l: 11:3*1b	Source pBGK.cpp:836] registers.Not v ied + k; of[il*lbsitelengt (++) llisionBGK at lbp cessing Float64 ied ied iet lbpBGK.cpp:8 ized ied exforce[il*3*lbsy	ectoriz h]); pBGK.cp BGK.cp 40] 40] 40]	ed: loop with p:840] pe(s) ng Inserts op	1 funct	ns	cal	0,648s 0 0,010s 1				ecC

Vectorization Advisor. Assist code modernization for x86 SIMD

1. Compiler diagnostics + Performance 2. Guidance: detect problem and Data + SIMD efficiency information recommend how to fix it 1 2 Issue: Peolod /Pomainder Joon(s) prese nel loop. Improve performance by moving Self 3. "Accurate" Trip Counts: understand Function Call Sites and Loops nel loop. Read more at Vector Essentials. Time parallelism granularity and overheads 🗄 [loop in runCForallLambdaLoops] 0.094s 0.140s ■ V [loop in std:: Complex_base<double.struct_C_double_complex>::i... 0.031s 0 Trip Counts mory accesses in the source loop does not Vectorized SSE; SSE2 loop processing Float32; Float64 data type Total Time I the compiler your memory access is aligned. Peeled loop; loop stmts were reordered Median ▲ Min Max Iteration Duration Call Count 0.000s 54 3,151s 🔲 1 1 3,1509s 1 1 at), 32); 0.000s 5 1 1 0.440s1 1 < 0.0001s 2408000 0.000s 0.010s1 § 1 1 2 < 0.0001s 207596 0.010s 12 1 9 < 0.0001s 1173619 0.010sl δ3 1 5 < 0.0001s 1312315 4. Loop-Carried Dependency Analysis 5. Memory Access Patterns Analysis Site Name Site Function Site Info Loop-Carried Dependencies **Strides Distribution** Access Pattern Problems and Messages loop_site_203 runCRawLoops runCRawLoops.cxx:1063 @ RAW:1 No information available No information available loop_site_139 runCRawLoops runCRawLoops.cxc622 No information available Mixed strides ID ۰. Modules State Type Site Name Sources All unit strides loop_site_160 runCRawLoops runCRawLoops.cxc925 No information available 100%/0%/0% P1 \odot Parallel site information site2 dqtest2.cpp dqtest2 Not a problem Memory Access Patterns 8 P2 🎙 New Read after write dependency site2 dqtest2.cpp dqtest2 ID • Stride -Type Modules Alignment Source 🗆 P22 🛛 🛃 0; 0; 1 P3 ۵ Unit stride runCRawLoops.cxx:637 Icals.exe Read after write dependency site2 datest2 New dqtest2.cpp 635 j2 = (j2 & 64-1) ; Write after write dependency site2 New New 636 p[ip][0] += y[i2+32]; 637 p[ip][1] += z[j2+32]; P5 ۵ R New Write after write dependency site2 dqtest2.cpp dqtest2 638 i2 += e[i2+32]; 639 j2 += f[j2+32]; P6 ۲ Write after read dependency site2 dgtest2.cpp datest2 New P23 • 0;0 Unit stride runCRawLoops.cxx:638 Icals.exe P7 0 Write after read dependency site2 dgtest2.cpp; idle.h dgtest2 New 444 P30 -1575; -63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801 Variable stride runCRawLoops.cx:628 Icals.exe il &= 64-1; 626 627 j1 &= 64-1; 628 p[ip][2] += b[j1][i1];

"Vectorization Advisor permitted me to focus my work where it really mattered. When you have only a limited amount of time to spend on optimization, it is invaluable."

> Gilles Civario, Sr. Software Architect, Irish Centre for High-End Computing

"Vectorization Advisor fills a gap in code performance analysis. It can guide the informed user to better exploit the vector capabilities of modern processors and coprocessors"

Dr. Luigi Iapichino Scientific Computing Expert **Leibniz Supercomputing Centre**

"Intel® Advisor XE has allowed us to quickly prototype ideas for parallelism, saving developer time and effort, and has already been used to highlight subtle parallel correctness issues in complex multi-file, multi-function algorithms."

Simon Hammond Senior Technical Staff Sandia National Laboratories "Intel® Advisor XE has been extremely helpful in identifying the best pieces of code for parallelization. We can save several days of manual work by targeting the right loops. At the same time, we can use Advisor to find potential thread safety issues to help avoid problems later on."

Carlos Boneti HPC software engineer, Schlumberger

Assist user at different LoD and perspectives

Traits

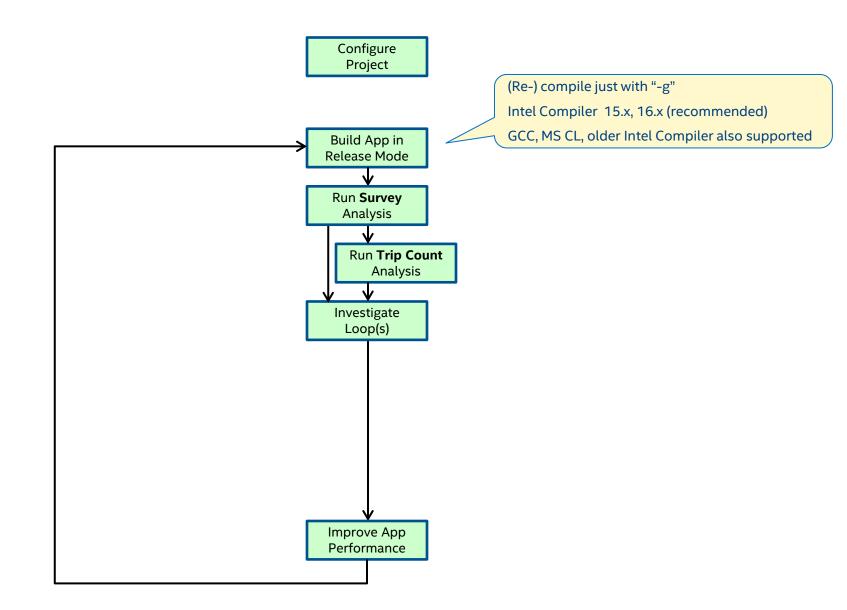
				DANCE >						
END-	-036	RG			AVX	Inserts; Extracts	128/256	Float64		
i> 🔽 [loop at ru	0.310s I	0.310s l		Loop was vectorized	AVX	Inserts; Extracts	128/256	Float64		
i>[loop at runC	0.309s	2.679s		volatile assignment was not vectorized.	Try using no A∀X	Inserts; Extracts	128/256	Float64		
🗄 🔽 [loop at ru	[] [loop at ru] 0.258x1 0.258x1 0.258x1 Capand to see more> AVX Extracts 128/256 Float64							Float64		
🔽 [loop at ru 0.240s l 0.240s l < Cxpand to see more > AVX Inserts 128/256; 128 Float64										
Issues: 1	Top Down Source Loop Assembly Assistance Recommendations Compiler Disgnostic Details Issues: 1 Recommendations: 2									
Issue: Ineffe	Issue: Ineffective Peeled/Remainder loop(s) present									
	All or some source loop iterations are not executing in the loop body. Improve performance by moving source loop iterations from peeled/remainder loops to the loop body. Read more at Glossary and Vector Essentials, Utilizing Full Vectors									

Use a smaller vector length

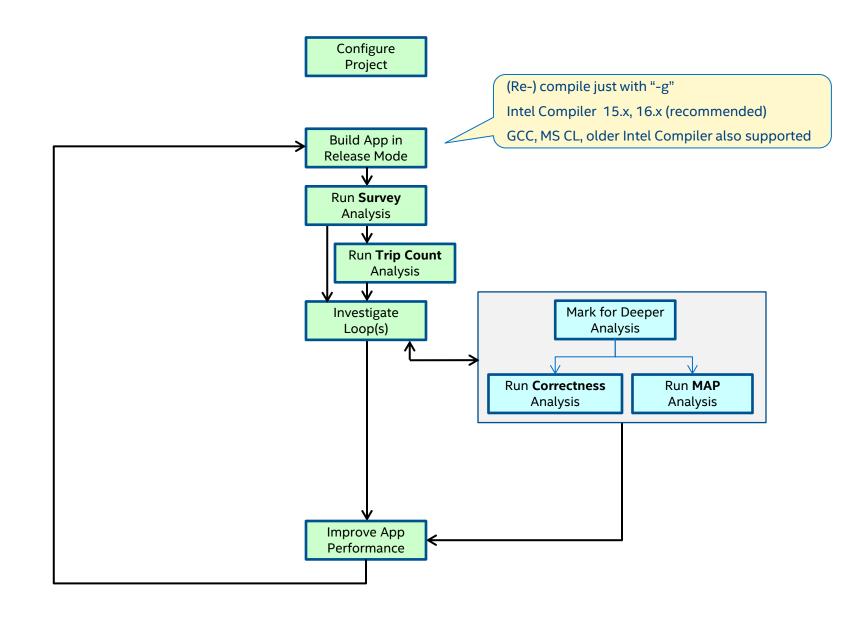
ANALYSIS on WORKLOAD (high-level),...

🗆 🔽 [loop at nbody.cc:>7 in main]	1,0205	1,0205		<expand see<="" th="" to=""><th><схрапо т</th><th><expand s<="" th="" to=""><th>AVA</th><th>oquare κοστs; Inserts; Extracts; I</th><th>Masked Stor</th></expand></th></expand>	<схрапо т	<expand s<="" th="" to=""><th>AVA</th><th>oquare κοστs; Inserts; Extracts; I</th><th>Masked Stor</th></expand>	AVA	oquare κοστs; Inserts; Extracts; I	Masked Stor
i> <mark>Ⅳ</mark> [loop at nbody.cc:57 in main]	1,810s 🔲	1,810s 🗖		Vectorized (Body)		2,00	AVX	Square Roots; Inserts; Extracts; Ma	sked Stores
i>[loop at nbody.cc:57 in main]	0,010s l	0,010s1		Peeled					
i>[loop at nbody.cc:54 in main]	0,000s I	1,820s 🗖		Scalar	inner loop		AVX	Shuffles; Inserts; Extracts	
i>[loop at nbody.cc:54 in main]	0,000s I	1,820s 🗖		Scalar	inner loop				
•			_			1	1		
Top Down Source Loop Assemb	lv Assistance	Recommend	lations						
File: nbody.cc:57 main									
					1	_		%	Loop
COUDCE						>	>	~	2000
SOURCE,	••								
04 IOT (SIZE C 1 = U	1 < 1: ++1	1.4							3 640.
55 real dvx = 0,									,
56 //#pragma vector alway									
57 □for (size t j = 0; j					10.110ms	1			3 640.
[loop at nbody.cc:57					- · ·				
Scalar loop. Not	vectorized								
No loop transfor		e applied							
[loop at nbody.cc:57									
			Float64	; Int32; UInt32 data	t				
No loop transfor	mations wer	e applied							
58 if (j !=	L) {				110,128ms				
59 real di	c = x[j] - x	[i], dy = y	j] - y[;	i], dz = z[j] - z[i];	289,778ms				
60 real d	ist2 = dx*dx	+ dy*dy + c	lz*dz;		100,042ms				
61 real m	OverDist3 =	m[j] / (dist	2 * Sgrt	(dist2));	710,194ms				
62 dvx +=	mOverDist3	* dx;	-		289,894ms				
63 dvy +=	mOverDist3	* dy;			259,742ms				
64 dvz +=	mOverDist3	* dz;			50,127ms	•			
cc .									i

Site Name	Site Function	Site Info	Loop-Carried Dependencies	Strides Distribution	Access Pattern
loop_site_8	main	nbody.cc:85	RAW:3	67% / 1% / 32%	Mixed strides
loop_site_7	main	nbody.cc:14	No dependencies found	25% / 75% / 0%	Mixed strides
loop_site_5	main	nbody.cc:20	RAW:3	50% / 50% / 0%	Mixed strides


anc	AS	ant	Stride					
	or (inc)	= 0; j < nrard	10103;]++) (32; 32; 32; 32	0; 0; 0; 0		
21 22 // Avoid singularity and interaction with self 23 const float softening = le-20; 24								
25		n's law of univ						
26			<pre>le[j].x - particle[i]</pre>		4; 4	12; 12		
			le[j].y - particle[i		4	12		
28	const fl	oat dz = partic	le[j].z - particle[i].z;	4; 4	12; 12		
Address	ine		Assembly		Operand Size (bytes)	Stride		
0x14037c493	27 vbro	adcastss xmm7,	dword ptr [rbp+rcx*8	+0x1c]	4	C 12		
0x14037c49a	26 vbro	adcastss xmm5,	dword ptr [rbp+rcx*8-	+0x18]	4	12		
0x14037c4a1	28 vbro	adcastss xmn4,	dword ptr [rbp+rcx*8-	+0x8]	4	12		
0x14037c4a8	27 vbro	adcastss xmm9,	dword ptr [rbp+rcx*8-	+0×4]	4	C 12		
0x14037c4af	26 vbro	adcastss xmm13,	dword ptr [rbp+rcx*	8]	4	12		
0x14037c4b6	20 vmov	ups ymm10, ymmw	ord ptr [rip+0x15d2c	21	32	0		

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.


inte

0. Workflow

(intel

(intel)

(intel)

1. The Right Data At Your Fingertips

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

inte

1. Compiler diagnostics + Performance Data + SIMD efficiency information

Function Call Sites and Loops	Self	Total	۵	ଜ	Compiler Vectorizat	tion
Function Call Sites and Loops	Time Time -		۷	Loop Type	Why No Vectorization?	
⊞[loop in runCForallLambdaLoops]	0.094	0.094s			Scalar	vector dependence prevents vector
🗄 [loop in runCForallLambdaLoops]	0.140	3.744s			Scalar	inner loop was already vectorized
■ V [loop in std::_Complex_base <double,struct _c_double_complex="">::i</double,struct>	0.031	0.031s			Vectorized (Body)	
Vectorized SSE; SSE2 loop processing Float32; Float64 Peeled loop; loop stmts were reordered	data ty	mpe(s)	havi	ng Di	visions; Square	Roots operations
⊞[loop in std::basic_string≺char,struct std::char_traits≺char>,class std::allo	0.000	544.0			Scalar	nonstandard loop is not a vectoriza
⊞ [loop in std::basic_string < char, struct std::char_traits < char>, class std::allo	0.000	544.0			Scalar	nonstandard loop is not a vectoriza
⊞[loop in std::num_put≺char,class std::ostreambuf_iterator <char,struct st<="" td=""><td>0.000</td><td>0.234s</td><td></td><td></td><td>Scalar</td><td>nonstandard loop is not a vectoriza</td></char,struct>	0.000	0.234s			Scalar	nonstandard loop is not a vectoriza

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

inte

The Right Data At Your Fingertips Get all the data you need for high impact vectorization

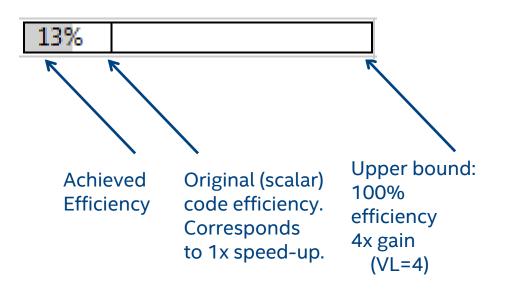
	Filter by which loops are vectorized!				Tri	o Cou	nts		What preventsvectorization?			
🞽 Wł	nere sho	oulc ve	ctoriz	ation and/or threadi	ng parall	elism?					Intel Advi	sor XE 2016
😤 Sum	imary 😪	Survey R.	🍅 Refir	nement Reports 💧 Annotat	ion Report	🖞 Suitabilit	ort					
Elapsed	l time: 54.4	4s Vectorized	Not	Vectorized 🖉 🛛 FILTE	R: All Modul	es 🗸	Source	es 🗸 🗸				٩,
E	0.000			<u> </u>	о <i>к</i> т:	T . 1 T	Trip 🔊		WI KI W	Vectori	zed Loops	^
Function	n Call Sites	and Loops	٥	P Vector Issues	Self Time▼	Total Time	Counts	Loop Type	Why No Vectorization?	Vecto	. Efficiency	Vector L.
i> [™] [loo	p at stl_alg	o.h:4740 in std::tr	·		0.170s l	0.170s l		Scalar	non-vectorizable loop ins			
🗆 🛄 [loo	p at loopst	:l.cpp:2449 in s234	L]		0.170s I	0.170s I	12; 4	<u>Collapse</u>	<u>Collapse</u>	AVX	~100 <mark>%</mark>	4
i>🕛 [loop a loo	pstl.cpp:2449 in s			0.150s I	0.150s I	12	Vectorized (Body)		AVX		4
i> 🗂 [loop loo	pstl.cpp:2449 in s			0.020s1	0.020s1	4	Remainder				
i> [™] [loo	pat opst	l.cpp:7900 in vas_]		0.170s l	0.170s I	500	Scalar	vectorization possible but			4
🕀 🕛 [loo	p a opsi	tl.cpp:3509 in s2			0.160s	0.160s l	12	Expand	Expand	AVX	~6 <mark>9%</mark>	8
🕀 🛄 [loo	p opst	l.cpp:3891 in s279	<u>)</u>		0.150s I	0.150s I	125; 4	Expand	Expand	AVX	~9 <mark>6%</mark>	8
🕀 🕛 [loo	p jopst	l.cpp:6249 in s414	1_]		0.150s l	0.150s I	12	Expand	Expand	AVX	~100 <mark>%</mark>	4
i> 🖱 [loo	d_nu	meric.h:247 in std			0.150s l	0.150s I	49	Scalar	vector dependence preve			<u> </u>
<			_			i	i	i	-	i		>
	ocus ot lo			nat vectorizat sues do I hav		Wł		/ector in e being ι	structions used?		low eff is the c	
	Get Faster Code Faster! Intel [®] Advisor XE Vectorization Optimization and Thread Prototyping											

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

Get Specific Advice For Improving Vectorization

Intel® Advisor XE – Vectorization Advisor


Where should I add vectorization and/or threading parallelism?										
🍄 Summary 🛛 😂 Survey Report 🛛 🍅 Refinement Reports 🛛 💧 Annotation Report 🛛 🍟 Suitability Report										
Elapsed time: 8,81s Vectorized Not Vectorized 🖉 FILTER: All Modules 💙 All Source	s v				٩					
Function Call Sites and Loops A @ Vector louise Solf Times Total Time			Vectoriz	ed Loops	; ^					
Click to see recommendation	Гоор Туре	Why No Vectorization?	Vecto	Estim	Vector Len					
	talar									
هَنْ [loop at arena.cpp:88 in tbb::tbb::] 🛛 🗌 0,000s1 11,460s 🗖	Scalar									
Upper Sector Se	<u>Collapse</u>	<u>Collapse</u>								
i > 🖞 [loop at fractal.cpp: 179 in <lambda1>::o 🗌 💡 2 Data type co 0,000s1 2,022s 0</lambda1>	Remainder				×					
<	- C				>					
Top Down Source Loop Assembly Assistance 💡 Recommendations 📮 Compiler Diagnostic De	ails									
3 Issue: Ineffective peeled/remainder loop(s) present All or some source loop iterations are not executing in the loop body. Impropeeled/remainder loops to the loop body.	ve performar	ice by moving source lo	op iterat	ions fro	om A					
Disable unrolling The trip count after loop unrolling is too small compared to the factor using a directive. ICL/ICC/ICPC Directive IFORT Directive										
#pragma nounroll !DIR\$ NOUNROLL #pragma unroll !DIR\$ UNROLL Read More: • User and Reference Guide for the Intel C++ Compiler 15.0 > Compiler Reference > Pragmas > Intel-specific Pragma Reference > unroll/nounroll.										

Vector Efficiency: my performance thermometer all the data in one place

Elapsed time: 8,01s

Loops		1	1		(Self Time
	Vecto	Efficiency 🔺	Estimated Gain	Vect	Co	Traits	/ector Widths	Sell Time
🗉 😈 [loop at lbpSUB.cpp:1280 in fPropagationS	AVX	13%	0,53	4	0,53	Blends; Extracts; Inserts; Shuffles	128/256	2,312s 🗖
🗄 🛄 [loop at lbpGET.cpp:152 in fGetFracSite]	AVX	30 <mark>%</mark>	2,38	8	2,34	Blends; Inserts; Masked Stores	128/256	0,030s I
🗄 🛄 [loop at lbpGET.cpp:42 in fGetOneMassSite]	AVX	36 <mark>%</mark>	2,86	8	2,79		256	0,100s l
🗄 ⊍ [loop at lbpGET.cpp:78 in fGetTotMassSite]	AVX	36 <mark>%</mark>	2,86	8	2,79		256	0,010s l
₪ 🖳 [loop at lbpGET.cpp:334 in fGetOneDirecSp	AVX	38%	3,05	8	2,97	Type Conversions	128/256	0,011s l
🗊 🛄 [loop at lbpBGK.cpp:840 in fCollisionBGK]	AVX	100%	2,05	2	2,05		128	0,080s l
							-	

Survey: find out if your code is "undervectorized" and why

'intel

2. Is it safe to vectorize: Tough problem #1 for not yet vectorized codes.

1. Compiler diagnostics + Performance Data + SIMD efficiency information

	Self	Total	Q	Compiler Vectorization		
Function Call Sites and Loops	Time	Time	¥	Loop Туре	Why No Vectorization?	
⊞[loop in runCForallLambdaLoops]	0.094	0.094s		Scalar	vector dependence prevents vector	
	0.140	3,744s		Scalar	inner loop was already vectorized	
Vectorized SSE; SSE2 loop processing Float32; Float64 Peeled loop; loop stmts were reordered	data ty			visions; Square		
⊞[loop in std::basic_string <char,struct <char="" std::char_traits="">,class std::allo</char,struct>		544.0		Scalar	nonstandard loop is not a vectoriza	
		544.0		Scalar	nonstandard loop is not a vectoriza	
$\textcircled{\label{eq:constraint} \blacksquare [loop in std::num_put < char, class std::ostreambuf_iterator < char, struct st}$		0.234s		Scalar	nonstandard loop is not a vectoriza	

2. Guidance: detect problem and recommend how to fix it

2 Issue: Peeled/Remainder loop(s) present

All or some source loop iterations are not executing in the kernel loop. Improve performance by moving
 source loop iterations from peeled/remainder loops to the kernel loop. Read more at <u>Vector Essentials</u>.
 Utilizing Full Vectors...
 O Recommendation: Align memory access
 Projected maximum performance gain: High
 Projection confidence: Medium
 The compiler created a peeled loop because one of the memory accesses in the source loop does not

This example aligns memory using a 32-byte boundary:

float *array;

- Somewhere else
- __assume_aligned(array, 32);
- // Use array in loop

4. Loop-Carried Dependency Analysis

Problems and Messages

ID	۵	Туре	Site Name	Sources	Modules	State
P1	0	Parallel site information	site2	dqtest2.cpp	dqtest2	🗸 Not a problem
P2	٨	Read after write dependency	site2	dqtest2.cpp	dqtest2	🎙 New
P3	٨	Read after write dependency	site2	dqtest2.cpp	dqtest2	🎙 New
P4	٥	Write after write dependency	site2	dqtest2.cpp	dqtest2	🎙 New
P5	٨	Write after write dependency	site2	dqtest2.cpp	dqtest2	🎙 New
P6	٨	Write after read dependency	site2	dqtest2.cpp	dqtest2	🎙 New
P7	٨	Write after read dependency	site2	dqtest2.cpp; idle.h	dqtest2	🎙 New

Is It Safe to Vectorize?

Loop-carried dependencies analysis verifies correctness

« 📕 Where should I add vec	🖉 Where should I add vectorization and/or threading parallelism? 🗖											
🌳 Summary 😼 Survey Report 🎓 Refinement Reports 💧 Annotation Report 🦞 Suitability Report												
Program time: 12.82s Vectorized Not Vectorized FILTER: All Modules All Sources Q												
5	ization											
Function Call Sites and Loops	Self Time▼	Total Time	٥	ବ	Trip Counts	Loop Type	Why No Vectorization?					
₃> 🔽 [loop at Multiply.c:53 in matvec]	0.047s l	0.047s1			3	Vectorized (Body	0					
i>[loop at Multiply.c:53 in matvec]	0.413s l	0.413s1			101	Scalar						
🗆 🔽 [loop at Multiply.c:45 in matvec]	0.109s l	12.373s 📖		<u> 91</u>		<u>Collapse</u>	Collapse					
i> <mark>V</mark> [loop at Multiply.c:45 in matvec]	0.078s l	11.930s 🔲			12	Vectorized (Body	0					
i>[loop at Multiply.c:45 in matvec]	0.031s l	0.444s l			2	Remainder						
i>[loop at Driver.c:146 in main]	0.016s	12.483s 🗔	✓	<u> </u>	1000000	Scalar	vector dependence prevents vectoriza					

2.1 Check Correctness

<u>Identify</u> and explore loop-carried dependencies for marked loops. <u>Fix</u> the reported problems.

Command Line

Select loop for Correct Analysis and press play!

Vector Dependence prevents Vectorization!

Data Dependencies – Tough Problem #1 Is it safe to force the compiler to vectorize?

Data dependencies

for (i=0;i<N;i++) // Loop carried dependencies!</pre>

A[i] = A[i-1]*C[i];// Need the ability to check if it

// it is safe to force the compiler

Issue: Assumed dependency present

The compiler assumed there is an anti-dependency (Write after read - WAR) or true dependency (Read after write - RAW) in the loop. Improve performance by investigating the assumption and handling accordingly.

Enable vectorization

Potential performance gain: Information not available until Beta Update release

Confidence this recommendation applies to your code: Information not available until Beta Update release

The Correctness analysis shows there is no real dependency in the loop for the given workload. Tell the compiler it is safe to vectorize using the restrict keyword or a <u>directive</u>.

ICL/ICC/ICPC Directive	IFORT Directive	Outcome			
#pragma simd or #pragma omp simd	IDIR\$ SIMD or ISOMP SIMD	Ignores all dependencies in the loop			
#pragma ivdep	IDIR\$ IVDEP	Ignores only vector dependencies (which is safest)			

Read More:

 <u>User and Reference Guide for the Intel C++ Compiler 15.0</u> > Compiler Reference > Pragmas > Intel-specific Pragma Reference > o ivdep

omp simd

Data Dependencies – Tough Problem #1 Dynamic check will ***know*** if indices overlap.

Static Assumption:

i>[™] [loop at lbpSUB.cpp:1280 in fPropagationSwap]

vector dependence prevents vectorization

Static Assumption:

i> ⁽∫ [loop at lbpSUB.cpp:1280 in fPropagationSwap]

vector dependence prevents vectorization

Both loops "equally bad" : from static analysis perspective

Data Dependencies – Tough Problem #1 Dynamic check ***knows*** if memory accesses really overlap.

[loop at IbpSUB.cpp:1280 in fPropagationSw... ON dependencies found

🖱 [loop at lbpSUB.cpp:1280 in fPropagationSw ... 🥹 RAW:1

Read after write dependency

Correctness Analysis: confirm dependencies are REAL

Correctness – Is It Safe to Vectorize?

Loop-carried dependencies analysis

2	📱 Check for loop-carried dependencies in your application 📼										
🕐 si	ummary	🗸 😂 Survey Report	🍅 Refin	iement Rep	orts 💧 A	nnotation F	Report 🦞	Suitability Rep	ort		
Site N	lame	Site Function Site	e Info	Loop-Can	ied Depend	encies	Strides [)istribution	Access Pattern		
loop_	site_6	main ma	in.cpp:13	RAW:1	🛆 WAR:1	▲ WA₩:1	91%	/ 0% / 9% 📕	Mixed strides		
	Memory Access Patterns Report Correctness Report										
		cess Patterns Report	Correctne	ess Report			uep	enc	lencies		
Probl				ess Report Site Name	Sources	-	Modules	State	JEIICIES	_	
Probl ID	lems and	i Messages			Sources main.cpp					_	
	ems and	l Messages Type		Site Name	main.cpp		Modules test_1.exe	State		_	
Probl ID P1	ems and ®	l Messages Type Parallel site informati	en I ndency I	Site Name loop_site_6 loop_site_6	main.cpp crtexe.c;		Modules test_1.exe test_1.exe	State ✔ Not a prob		_	

/rite	after read de	pendency: Code L	ocations			
)	Description	Source	Function	Module	State	
X17	Read	🖹 main.cpp:22	main	test_1.exe	Re New	
2	0	k += a[9];				
2	1	k *= a[8];				
2	2	k -= a[7];				
2	3	k += a[6];				
2	4	k *= a[5];				
X18	Read	🗄 main.cpp:23	(B. M	
2	1	k *= a[8];				
2	2	k -= a[7];		Irce	lines with Read	
2	3	k += a[6];	300			
					1 m	
			and		rite accesses	
			ana			
			1 A.			
			dete	acte	ad here and here are a second s	

1. Mark-up the loop and check for the presence of REAL dependencies

2. Explore dependencies in more details with code snippets

In this example 3 dependencies were detected

- RAW Read After Write
- WAR Write After Read
- WAW Write After Write

3. Any speed-up out of there? Use SIMD to make your code faster, instead of slower.

Optimization Notice

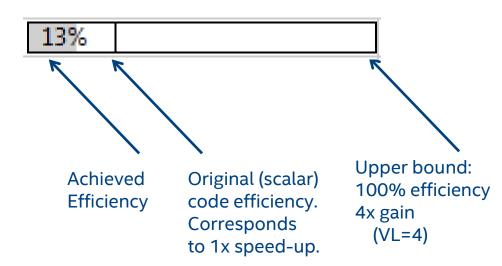
1. Compiler diagnostics + Performance Data + SIMD efficiency information

Function Call Sites and Loops	Self Time	T T
🗄 [loop in runCForallLambdaLoops]	0.094s	1
🗄 [loop in runCForallLambdaLoops]	0.140s	1
■ V [loop in std::_Complex_base <double,struct _c_double_complex="">::i</double,struct>	0.031s	0
Vectorized SSE; SSE2 loop processing Float32; Float64 (Peeled loop; loop stmts were reordered	iata ty	pe
⊞ [loop in std::basic_string < char, struct std::char_traits < char>, class std::allo	0.000s	5
🗄 [loop in std::basic_string <char,struct std::char_traits<char="">,class std::allo</char,struct>	0.000s	5
⊞[loop in std::num_put <char,class st<="" std::ostreambuf_iterator<char,struct="" td=""><td>0.000s</td><td></td></char,class>	0.000s	

3. "Accurate" Trip Counts: understand parallelism granularity and overheads

Trip Coun	nts		
Median	Min	Max	Call Count
			1///////
101	101	101	12000000
3	3	3	1000000
101	101	101	2000000
1000000	1000000	1000000	1

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.


'inte

Vector Efficiency: my performance thermometer all the data in one place

Elapsed time: 8,01s

Loops		1	1		_ (Self Time	
Loops	Vecto	Efficiency 🔺	Estimated Gain	Vect	Co	Traits	/ector Widths	Sell Time
∎ 😈 [loop at lbpSUB.cpp:1280 in fPropagationS	AVX	13%	0,53	4	0,53	Blends; Extracts; Inserts; Shuffles	128/256	2,312s 🗖
🗄 🖳 [loop at lbpGET.cpp:152 in fGetFracSite]	AVX	30%	2,38	8	2,34	Blends; Inserts; Masked Stores	128/256	0,030s I
⊞	AVX	36%	2,86	8	2,79		256	0,100s l
🗄 🛄 [loop at lbpGET.cpp:78 in fGetTotMassSite]	AVX	36%	2,86	8	2,79		256	0,010s l
🗄 🛄 [loop at lbpGET.cpp:334 in fGetOneDirecSp	AVX	38%	3,05	8	2,97	Type Conversions	128/256	0,011s I
₃>⊍ [loop at lbpBGK.cpp:840 in fCollisionBGK]	AVX	100%	2,05	2	2,05		128	0,080s l

•

- Auto-vectorization: affected <3% of code</p>
 - With moderate speed-ups
- First attempt to simply put #pragma simd:
 - Introduced slow-down
- Look at Vector Issues and Traits to find out why
 - All kinds of "memory manipulations"
 - Usually an indication of "bad" access pattern

Survey: find out if your code is "undervectorized" and why

1. Compiler diagnostics + Performance Data + SIMD efficiency information

Energies Collicitories Hannes	Self	Total		Compiler Vectorization			
Function Call Sites and Loops	Time	Time	9	Loop Туре	Why No Vectorization?		
⊞[loop in runCForallLambdaLoops]	0.094s	0.094s		Scalar	vector dependence prevents vector		
	0.140s	3.744s		Scalar	inner loop was already vectorized		
Vectorized SSE; SSE2 loop processing Float32; Float64 o Peeled loop; loop stmts were reordered	lata ty	pe(s) l		visions; Square	Roots operations		
⊞[loop in std#basic_string < char, struct std#char_traits < char>, class std#allo		544.0		Scalar	nonstandard loop is not a vectoriza		
				o. 1			
⊞[loop in std:/basic_string <char,struct <char="" char_traits="" std:="">,class std:/allo</char,struct>		544.0		Scalar	nonstandard loop is not a vectoriza		

2. Guidance: detect problem and recommend how to fix it

2 Issue: Peeled/Remainder loop(s) present

8

All or some source loop iterations are not executing in the kernel loop. Improve performance by moving source loop iterations from peeled/remainder loops to the kernel loop. Read more at Vector Essentials, Utilizing Full Vectors...

Recommendation: Align memory access Projected maximum performance gain: High Projection confidence: Medium

The compiler created a peeled loop because one of the memory accesses in the source loop does not start at a data boundary. Align the memory access and tell the compiler your memory access is aligned. This example aligns memory using a 32-byte boundary:

float *array;

array = (float *)_mm_malloc(ARRAY_SIZE*sizeof(float), 32);

// Somewhere else

- _assume_aligned(array, 32);
 // Use array in loop

Background on loop vectorization

A typical vectorized loop consists of Main vector body This is where we want our loops to be executing!

Fastest among the three!

Optional peel part

• Used for the unaligned references in your loop. Uses Scalar or slower vector

Remainder part

• Due to the number of iterations (trip count) not being divisible by vector length. Uses Scalar or slower vector.

Larger vector register means more iterations in peel/remainder

- Make sure you Align your data!
- Make the number of iterations divisible by the vector length!

Get Specific Advice For Improving Vectorization Intel® Advisor XE – Vectorization Advisor

🚇 Where should I add vectorization and/or threading parallelism? 📼 Intel Advisor XE 2016											
🔗 Summary 🗣 Survey Report 🔌 Refineme	ent Repo	rts 💧 Annotation	Report 🛛 🖞 Sui	itability Report							
Elapsed time: 8,81s Vectorized Not Vector	rized	් FILTER: A	II Modules	✓ All Sources	¥				্]	
Euroption Call Sites and Loops	Function Call Sites and Loops & Vector Issues Self Time Total Time Loop Type Why No Vectorization?										
	W			rotal fime	соор туре	why two vectorization:	Vecto	Estim	Vector Len		
₽0 [loop at market Click to see I	reco	ommenda	tion	11,460s 📼	Scalar						
i> 🖞 [loop at arena.cpp:88 in tbb::tbb::]			0,000s I	11,460s 💳							
[loop at fractal.cpp:179 in <lambda1>::op</lambda1>				2,022s 0	<u>Collapse</u>	<u>Collapse</u>					
i> 🖞 [loop at fractal.cpp:179 in <lambda1>::o</lambda1>	•		0,000s I	2,022s 0	Remainder					,	
<									>		
Top Down Source Loop Assembly Assist	ance	Recommendation	s 🗖 Compiler		aile					Ē	
		, neconinendation.	- complici	blughostic bea	311.2						
3 Issue: Ineffective peele	d/rem	nainder loop(s) present							Ì	
All or some <u>source loop</u> ite			ng in the <u>loop</u>	body. Improv	/e performar	nce by moving source lo	op iterat	ions fro	m		
· · · · · · · · · · · · · · · · · · ·		op bouy.									
O Disable unrolling											
The <u>trip count</u> after lo factor using a <u>directiv</u>		olling is too sma	II compared to		Orxes	shows hints t	omc	ove	nroll		
ICL/ICC/ICPC Dire			Ve	iterati	ons to	vector body					
#pragma nounroll	cure	IDIR\$ NOUNROL				,					
#pragma unroll		IDIR\$ UNROLL									
Read More:											
User and Refere	nce Gu	ide for the Intel (C++ Compiler	15.0 > Com	piler Refer	ence > Pragmas > In	itel-spe	cific P	ragma		
Reference > u										,	

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Don't Just Vectorize, Vectorize Efficiently

See detailed times for each part of your loops. Is it worth more effort?

🖉 Where should I add vectorization and/or threading parallelism? 🗖											
🍄 Summary 🚭 Survey Report 🍅 Refinement Reports 💧 Annotation Report 👭 Suitability Report											
Elapsed time: 8,52s Vectorized Image: Specific text and tex											
Function Call Sites and Loops	Vector Issues	Self Time▼	Total Time	Loop Туре	Why No Vectorization?						
□ 🥑 [loop at fractal.cpp:179 in <lambda1>::op</lambda1>		. 0,013sl	12,020s	Collapse	Collapse						
🔹 😈 [loop at fractal.cpp:179 in <lambda1>::o 🛛 🗹</lambda1>	🛛 💡 🛓 Serialized use .	. 0,013s1	11,281s 📖	Vectorized (Body)							
i> [™] [loop at fractal.cpp:179 in <lambda1>::o 🔽</lambda1>		0,000s1	0,163s1	Peeled							
i> [™] [loop at fractal.cpp:179 in <lambda1>::o 🔽</lambda1>		0,000s I	0,576s I	Remainder							
i> [™] [loop at fractal.cpp:177 in <lambda1>::oper</lambda1>		0,010s I	12,030s 📖	Scalar							
<	1		1		1						

Tough problem #1 for already vectorized codes

Δ

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

inte

Non-Contiguous Memory – Tough Problem #2 Potential to vectorize but may be inefficient

Unit-Stride access to arrays

for (i=0;i<N;i++)</pre>

A[i] = C[i]*D[i]; //Accessing array elements 1 by 1

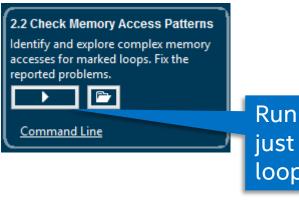
Non-unit-stride (constant stride) access to arrays

Indirect reference in a loop

```
for (i=0;i<N;i++)</pre>
```

Object-oriented programming

```
b
                                        С
                                                   b
                                              а
                               а
                                                       С
Class Point {float
                                 z x y z x y z x y z x y z x
x,y,z;}
Class Triangle {Point
                                   T[0]
                                                 T[1]
a,b,c;}
Triangle T[100];
Point Cross( const Point& a, const Point& b ) {
    return Point( a.y*b.z-a.z*b.y, a.z*b.x-a.x*b.z,
a.x*a.y-a.y-b.x );
}
void ComputeNormals( Point normal[___restrict], const
Triangle p[], size_t n )
    for( size_t i=0; i<n; ++i )</pre>
        normal[i] = Cross(p[i].b-p[i].a, p[i].c-p[i].a);
```


Object oriented programming may inhibit SIMD code generation

38

Improve Vectorization

Memory Access pattern analysis

🖉 Where should I add vectorization a	anc	l/or threading	parallelisn	n? 🗖							
🌳 Summary 🚭 Survey Report 🍅 Refinement Reports 💧 Annotation Report 🦞 Suitability Report											
Elapsed time: 8,52s Vectorized Image: Source state st											
Function Call Sites and Loops		Select loo	os of inte	erest	Loop Туре	Why No Vectorization?					
🗆 🖲 [loop at fractal.cpp:179 in <lambda1>::op</lambda1>		le	0,013s	12,020s 📩	Collapse	Collapse					
🗈 🙆 [loop at fractal.cpp:179 in <lambda1>::o 🛛 🗹</lambda1>		💡 <u>4</u> Serialized use	0,013s I	11,281s 🗔	Vectorized (Body)						
i> 🖱 [loop at fractal.cpp:179 in <lambda1>::o 🔽</lambda1>	/		0,000s I	0,163s1	Peeled						
i> ॑ [loop at fractal.cpp:179 in <lambda1>::o</lambda1>	/		0,000s I	0,576s I	Remainder	////////					
i> 🖱 [loop at fractal.cpp:177 in <lambda1>::oper</lambda1>			0,010s I	12,030s 💳	Scalar						
<											

Run Memory Access Patterns analysis, just to check how memory is used in the loop and the called function

Optimization Notice

intel

1. Compiler diagnostics + Performance Data + SIMD efficiency information

Constitue Coll Characterial access	Self	Total	Q	Compiler Vectorizat	
Function Call Sites and Loops	Time	Time	¥	Loop Туре	Why No Vectorization?
⊞ [loop in runCForallLambdaLoops]	0.094	0.094s		Scalar	vector dependence prevents vector
	0.140	3,744s		Scalar	inner loop was already vectorized
Vectorized SSE; SSE2 loop processing Float32; Float64 Peeled loop; loop stmts were reordered	data ty			visions; Square	
🗄 [loop in std::basic_string < char, struct std::char_traits < char>, class std::allo		544.0		Scalar	nonstandard loop is not a vectoriza
		544.0		Scalar	nonstandard loop is not a vectoriza
$\textcircled{\label{eq:constraint} \blacksquare [loop in std::num_put < char, class std::ostreambuf_iterator < char, struct st}$		0.234s		Scalar	nonstandard loop is not a vectoriza

2. Guidance: detect problem and recommend how to fix it

2 Issue: Peeled/Remainder loop(s) present

All or some source loop iterations are not executing in the kernel loop. Improve performance by moving source loop iterations from peeled/remainder loops to the kernel loop. Read more at <u>Vector Essentials</u>, <u>Utilizing Full Vectors</u>... **Recommendation: Align memory access**Projected maximum performance gain: High
Projection confidence: Medium
The compiler created a peeled loop because one of the memory accesses in the source loop does not start at data boundary. Align the memory access and tell the compiler your memory access is aligned This example aligns memory using a 32-byte boundary:
float *array;
array = (float *)_mm_malloc(ARRAY_SIZE*sizeof(float), 32);
// Somewhere else
__assume_aligned(array, 32);
// Ise array in loop

3. Loop-Carried Dependency Analysis

Problems and Messages

ID	۹.	Туре	Site Name	Sources	Modules	State
P1	0	Parallel site information	site2	dqtest2.cpp	dqtest2	✓ Not a prob
P2	٥	Read after write dependency	site2	dqtest2.cpp	dqtest2	Rew New
P3	۲	Read after write dependency	site2	dqtest2.cpp	dqtest2	庵 New
						🗣 New
P5	٥	Write after write dependency	site2	dqtest2.cpp	dqtest2	降 New
P6	۲	Write after read dependency	site2	dqtest2.cpp	dqtest2	庵 New
P7	۲	Write after read dependency	site2	dqtest2.cpp; idle.h	dqtest2	庵 New

4. Memory Access Patterns Analysis

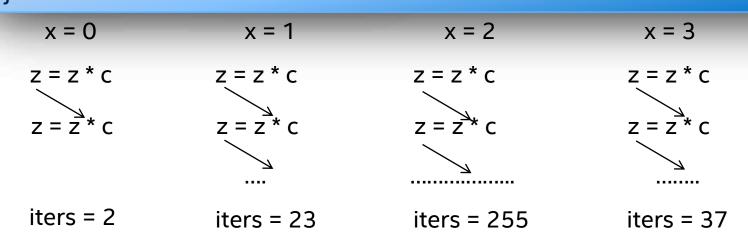
Site	Name	Site Function	Site Info	Loop-Carried Dependencies	Strides Distribution	A	Access Pattern
loop	_site_203	runCRawLoops	runCRawLoops.cxx:1063	RAW:1	No information avai	lable N	lo information available
loop	_site_139			No information available	39% / 36% / 25 <mark>%</mark>		/lixed strides
loop	_site_160	runCRawLoops	runCRawLoops.cxx:925	No information available	100%/0%/0%	A	All unit strides
					<u></u>	1117	///
Me	mory Aco	ess Patterns					
ID	•	Stride 🕶		Туре	Source	Modu	les Alignment
ID = P2		Stride ▼ 0; 0; 1		-26-	Source runCRawLoops.cx:637		
			j2 = (j2 & 64-1	Unit stride			
	2 🔝		j2 = (j2 & 64-1 p[ip][0] += y[i2+	Unit stride			
	2 🔝		2- (2	Unit stride			
	2 🔝 635 636		p[ip][0] += y[i2+	Unit stride			

	030	12 += e[12+32];			
	639	j2 += f[j2+32];			
± P2	3 🗾	0; 0	Unit stride	runCRawLoops.cxc638	Icals.exe
= P3	0 🎂	-1575; -63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801	Variable stride	runCRawLoops.cxc:628	Icals.exe
	626	i1 &= 64-1;			
	627	j1 &= 64-1;			
	628	p[ip][2] += b[j1][i	1];		

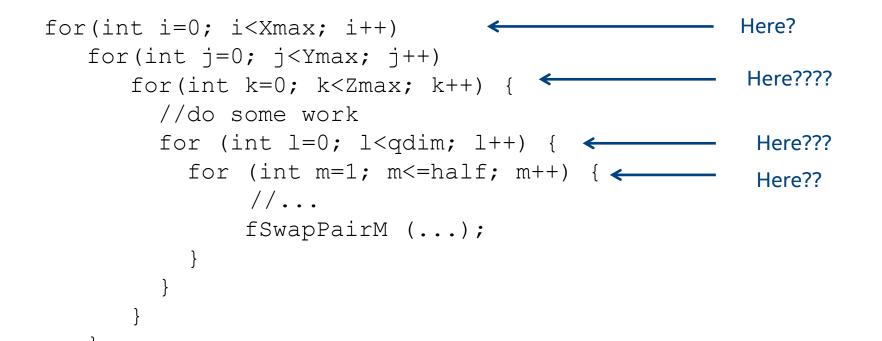
Know your access pattern

Site Location	on		Loop-Carried Dependence	es Strides Distr	ribution Access	Pattern Sit	e Name
[loop in fPr	opagationSwap at lbp	SUB.cpp:1247]	No information available	o information available 33% / 5%			op_site_60
			blue color: fraction of unit stride accesses	yellow. "fixed" stride accesses ratio	red color: fraction of irregula	r (variable stride)	accesses
Memory A	ccess Patterns Report	Dependencie	es Report				
ID 🕲	Stride			Туре	Source	Site Name	Variable
= P1 🛛 🐱	3			Constant stride	IbpSUB.cpp:1248	loop_site_60	
1246 ; 1247 <mark>1248</mark>			<=half; m++) { od(i + lbv[3*m], Xm	ax);			
1249 1250			od(j + lbv[3*m+1], Ym od(k + lbv[3*m+2], Zm				
⊕P11 🛛	0; 1			Unit stride	lbpSUB.cpp:1253	loop_site_60	lbf,lbsy
🗆 P12 🛛 👪	-289559; -274359; -14	4477; -13717; -	13679; 723; 302519; 303279	Variable stride	lbpSUB.cpp:1253	loop_site_60	
	ifndef SWAP_OVER	LAP	x * Ymax + nexty) *				
1253	iSwapPair (16f)	11*1bsitele	ength + l*lbsy.nq + m	(+ half], lbf	[linext*lbsite	length + l	"lbsy.nc

inte


5. It's time for explicit parallelism choices to make your code faster, not slower.

Example of Outer Loop Vectorization


```
#pragma omp declare simd
int lednam(float c)
{ // Compute n >= 0 such that c^n > LIMIT
float z = 1.0f; int iters = 0;
while (z < LIMIT) {
    z = z * c; iters++;
    }
    return iters;
}</pre>
```

```
float in_vals[];
#pragma omp simd
for(int x = 0; x < Width; ++x) {
    count[x] = lednam(in_vals[x]);
}</pre>
```


Optimization Notice

Time for parallelism choices: Where to introduce parallelism and how?

No performance without "explicit parallelism" choices (no performance "by default") No good choices without knowing "the DATA"

1. Compiler diagnostics + Performance Data + SIMD efficiency information

Constitue Coll Characterial access	Self	Total	Q	Compiler Vectorizat	
Function Call Sites and Loops	Time	Time	¥	Loop Туре	Why No Vectorization?
⊞ [loop in runCForallLambdaLoops]	0.094	0.094s		Scalar	vector dependence prevents vector
	0.140	3,744s		Scalar	inner loop was already vectorized
Vectorized SSE; SSE2 loop processing Float32; Float64 Peeled loop; loop stmts were reordered	data ty			visions; Square	
🗄 [loop in std::basic_string < char, struct std::char_traits < char>, class std::allo		544.0		Scalar	nonstandard loop is not a vectoriza
		544.0		Scalar	nonstandard loop is not a vectoriza
$\textcircled{\label{eq:constraint} \blacksquare [loop in std::num_put < char, class std::ostreambuf_iterator < char, struct st}$		0.234s		Scalar	nonstandard loop is not a vectoriza

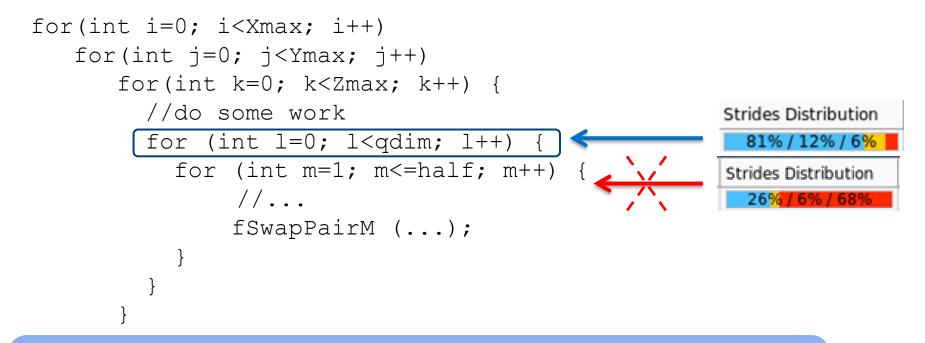
2. Guidance: detect problem and recommend how to fix it

2 Issue: Peeled/Remainder loop(s) present

All or some source loop iterations are not executing in the kernel loop. Improve performance by moving source loop iterations from peeled/remainder loops to the kernel loop. Read more at <u>Vector Essentials</u>, <u>Utilizing Full Vectors</u>... **Recommendation: Align memory access**Projected maximum performance gain: High
Projection confidence: Medium
The compiler created a peeled loop because one of the memory accesses in the source loop does not start at data boundary. Align the memory access and tell the compiler your memory access is aligned This example aligns memory using a 32-byte boundary:
float *array;
array = (float *)_mm_malloc(ARRAY_SIZE*sizeof(float), 32);
// Somewhere else
__assume_aligned(array, 32);
// Ise array in loop

3. Loop-Carried Dependency Analysis

Problems and Messages


ID	۹.	Туре	Site Name	Sources	Modules	State
P1	0	Parallel site information	site2	dqtest2.cpp	dqtest2	✓ Not a prob
P2	٥	Read after write dependency	site2	dqtest2.cpp	dqtest2	Rew New
P3	۲	Read after write dependency	site2	dqtest2.cpp	dqtest2	庵 New
						🗣 New
P5	٥	Write after write dependency	site2	dqtest2.cpp	dqtest2	降 New
P6	۲	Write after read dependency	site2	dqtest2.cpp	dqtest2	庵 New
P7	۲	Write after read dependency	site2	dqtest2.cpp; idle.h	dqtest2	庵 New

4. Memory Access Patterns Analysis

Site	Name	Site Function	Site Info	Loop-Carried Dependencies	Strides Distribution	A	ccess Pattern
loo	o_site_203	runCRawLoops	runCRawLoops.cxx:1063	RAW:1	No information avai	lable N	o information available
loo	o_site_139	runCRawLoops	runCRawLoops.cxx:622	No information available	39% / <mark>36% / 25</mark>	6 N	lixed strides
loo	_site_160	runCRawLoops	runCRawLoops.cxx:925	No information available	100%/0%/0%	A	ll unit strides
Me	emory Acc	ess Patterns	orrectness Report				
ID	•	Stride		Туре	Source	Modul	es Alignment
ΞP.	22 🔛	0; 0; 1		Unit stride	runCRawLoops.cxc:637	Icals.ex	e
	635		j2 = (j2 & 64-1);			
	636		p[ip][0] += y[i2+	+32];			
	637		p[ip][1] += z[j2+	+32];			
	638		i2 += e[i2+32];				

	030		$12 \neq e[12 \neq 32];$			
	639		j2 += f[j2+32];			
± P2	23 0	4	0; 0	Unit stride	runCRawLoops.cxc638	Icals.exe
⊟ P 3	80 8	44 ³ 1	-1575; -63; -26; -25; -1; 0; 1; 25; 26; 63; 2164801	Variable stride	runCRawLoops.cxc:628	Icals.exe
	626		i1 ⊊= 64-1;			
	627		j1 ⊊= 64-1;			
	628		p[ip][2] += b[j1][i:	1];		

Time for parallelism choices: Advisor MAP to make informed optimal decision!

Memory Access Patterns analysis (+ also Trip Counts) to drive decision wrt most appropriate parallelism level

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Optimization Notice

Vector Advisor

• All the data in one place

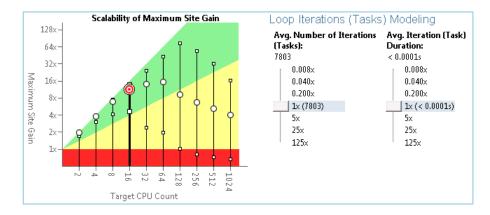
(also leveraging Intel Compiler 15.x/16.x reports)

- Guidance and Correctness check
- Deep dive memory analysis

ation Call	Cites and I areas	Self Tim		Total Ti			@ Compil	er Vectorization	1	«	Vector	rized Loops 🔺		
iction Call	Sites and Loops	Self Tim	e	lotal li	ime	٥	Loop Ty	/pe W	hy No Vectorization?	Gain Estimate	Vect	Vectorization T	ra Vector Wid	ths Vecto
[loop at r	nbody.cc:22 in main]	1,86	54s 🗖	1,80	64s 🗖		Vectoriz	ed (Body)		5,69	AVX	Square Roots; I	ns 128/256	Float
oop at nbo	ody.cc:16 in main]	0,00	0s1	1,80	64s 🔲		Scalar	in	ner loop was already vectorized		AVX	Shuffles; Insert	s; 128/256	Float
oop at nbo	ody.cc:97 in main]	0,00	0s I	1,86	64s 🗖		Scalar		ompile time constraints prevent	t	AVX		128/256	Float
op Down	Source Loop Asse	mbly 4	Assista	nce R	lecomm	endatior	s Compiler	Diagnostic Det	ails					
								-						
اددىيە. (Compile time o	onstra	ainte	nrova	ant lo	on on	timizatio	1						
									ation level prevented the co	mniler from de	termin	ning a vectoriz	ation approac	h for this
	ommendation	- F	Site Na	-	Site Fu		Site Info	03/ 001112	Loop-Carried Dependencies	Strides Distribu	7.77	Access Patt	/////	
	ommenuation		oop sit				runCRawLo	one con1062	RAW:1			ble No informa		
Line				-			runCRawLo		No information available	39% / 36%		7		
52 53	void Newton(size_									100%/0%			-	
55 54	const real dt(for (size t :		oop_sit	te_100	runCKa	awLoops	runCRawLo	ops.cxx:925	No information available	100 % / 0 %	/ 0%	All unit stric	les	_
55	real dvx =	= 0. dv												
56	//#pragma vector a	always	Memo	ory Acce	ess Patte	erns								
57 l	^{Efor} (size_t j = (- 1	D	•	Stride 🔻				Type So	ource	N	Modules Alig	gnment	A
	[loop at nbody. Scalar loop		■ P22	I (0: 0: 1				Unit stride ru	InCRawLoops.cx	c637 lo	cals.exe		
	No loop tra		63				i2 = (j2 & 64-1						
	[loop at nbody.		63)] += y[i2+						
	Vectorized No loop tra		63					l] += z[j2+	1.					
	NO 100p CTa	IISTOTIK	63					[i2+32];	,,					
58	if (:		63	9			j2 += i	[j2+32];						
59 60		eal dx	± P23	M (0; 0				Unit stride ru	InCRawLoops.cx	c638 1	cals.exe		
60 61		eal dis eal mOv 🛙			0;0					InCRawLoops.cx				
62		vx += m			0; 0; 0					inCRawLoops.cx				
63		7V += m	■P30			621-261	25, 1, 0, 1, 25	. 26, 62, 216/9		inCRawLoops.cx			ſ	
	dı	vz += m	62		- ; с т с т	05, -20;	11 s= (incitaweoops.co	1020 10	COISIEXE		=
64			02				11 &= (11 &= (
64 65	,		62	7										
64 65	,		62				2		[11]:					
64 65	,		62 62 62	8			p[ip][2	2] += b[j1] 3] += c[j1]						

Threading Advisor XE

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.


Data-Driven <u>Threading</u> Design Intel[®] Advisor XE – Thread Prototyping

Have you:

- Tried threading an app, but seen little performance benefit?
- Hit a "scalability barrier"? Performance gains level off as you add cores?
- Delayed a release that adds threading because of synchronization errors?

Breakthrough for threading design:

- Quickly prototype multiple options
- Project scaling on larger systems
- Find synchronization errors before implementing threading
- Separate design and implementation -Design without disrupting development

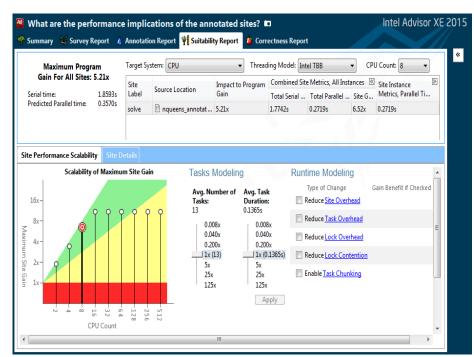
Add Parallelism with Less Effort, Less Risk and More Impact

http://intel.ly/advisor-xe


Optimization Notice

Check Suitability Is it fast enough?

Experiment with modeling by changing:


- Number of tasks
- Task duration
- Runtime modeling
- Threading model
- Target system

Instantly see impact on scalability

Quickly Evaluate Design Alternatives

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

inte

Summary

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

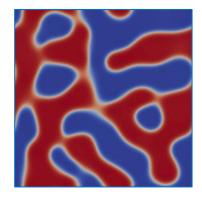
Some Future Plans

KNL ("native") support, including:

- Survey analysis with AVX512 ISA-specific insights and advices. Identify cases where migration to AVX512 may give special benefit
- Memory Access Pattern extended to provide vgather/vscatter and masking utilization analysis

Memory wall vs. Vectorization:

- "Quick and Dirty" memory-bound (DRAM/LLC/L2/L1) vs. compute-bound checks and modeling
- Footprint/latency deeper dive in Advisor MAP


Back-up

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

(intel)

Computational fluid dynamics engine

- New mesoscopic simulation engine
- Applicable for problems such as inkjet printing and steel production
- Lattice Boltzman Equation

Developed by EPSRC CPP5

- including Hartree, Oxford, Imperial College
- Michael Seaton at Hartree as major contributor

Workload characteristics:

- "Flat profile", many small kernels
- Profiles are very diverse depending on input datasets

Additional Resources

All links start with: https://software.intel.com/

Learn more about Vectorization Advisor:

https://software.intel.com/en-us/articles/vectorization-advisor-faq https://software.intel.com/en-us/intel-advisor-xe

Vectorization Guide:

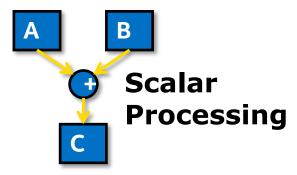
https://software.intel.com/articles/a-guide-to-auto-vectorization-with-intel-c-compilers/

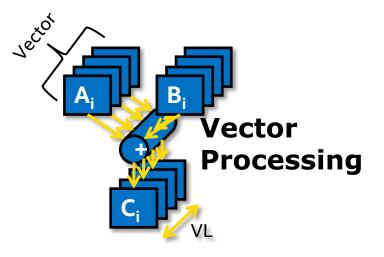
Explicit Vector Programming in Fortran: https://software.intel.com/articles/explicit-vector-programming-in-fortran

Optimization Reports:

https://software.intel.com/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports

Beta Registration & Download:


https://software.intel.com/en-us/articles/intel-parallel-studio-xe-2016-beta


For Intel[®] Xeon Phi[™] coprocessors, but also applicable:

https://software.intel.com/en-us/articles/vectorization-essential https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization

Recap

	4.4	1.1	3.1	- <mark>8.</mark> 5	-1.3	1.7	7.5	5.6
т	-0.3	-0.5	0.5	0	0.1	0.8	0.9	0.7
=	4.1	0.6	3.6	-8.5	-1.2	2.5	8.4	6.3

(intel)

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED "AS IS". NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015v, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Optimization Notice