
Intel® VTune™ Amplifier XE
Generics

Presenter: Georg Zitzlsberger

Date: 10-07-2015

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Introduction to Intel® VTune™ Amplifier XE profiler

High-level Features

Types of Analysis

Hotspot analysis

 Basic Hotspots

 Advanced Hotspots

 Lab 1: Find the Performance Hotspot

Concurrency Analysis

 Lab 2: Analyzing Parallelism

Locks and Waits Analysis

 Lab 3: Identifying Parallelism issues

User and Synchronization API, Frame/Task Analysis

 Lab 4: Instrumenting user source code

Command Line Interface, Installation, Remote Collection

Conclusion
2

Agenda

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

3

Intel® VTune™ Amplifier XE
Performance Profiler

 Where is my application…

 Spending Time? Wasting Time? Waiting Too Long?

• Focus tuning on functions
taking time

• See call stacks
• See time on source

• See cache misses on your
source

• See functions sorted by
of cache misses

• See locks by wait time

• Red/Green for CPU
utilization during wait

• Windows & Linux
• Low overhead
• No special recompiles

Advanced Profiling For Scalable Multicore Performance

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

4

Intel® VTune™ Amplifier XE
Tune Applications for Scalable Multicore Performance
Fast, Accurate Performance Profiles
 Hotspot (Statistical call tree)
 Call counts (Statistical)
 Hardware-Event Sampling

Thread Profiling
 Visualize thread interactions on timeline
 Balance workloads

Easy set-up
 Pre-defined performance profiles
 Use a normal production build

Find Answers Fast
 Filter extraneous data
 View results on the source / assembly

Compatible
 Microsoft, GCC, Intel compilers
 C/C++, Fortran, Assembly, .NET, Java
 Latest Intel® processors

and compatible processors1

Windows or Linux
 Visual Studio Integration (Windows)
 Standalone user i/f and command line
 32 and 64-bit

1 IA32 and Intel® 64 architectures.
Many features work with compatible processors.
Event based sampling requires a genuine Intel® Processor.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

A set of instruments to identify
performance problems

Quick Overview

5

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

6

Intel® VTune™ Amplifier XE
Get a quick snapshot

4 cores

CPU
Usage

Thread
Concurrency

Frame
Rate

6

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

7

Intel® VTune™ Amplifier XE
Identify hotspots

Hottest Call Stack Hottest Functions

Quickly identify what is important

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

8

Intel® VTune™ Amplifier XE
Identify threading inefficiency

Coarse Grain
Locks

High Lock
Contention

Load
Imbalance

Low
Concurrency

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

9

Intel® VTune™ Amplifier XE
Find Answers Fast

Double Click Function
to View Source

Adjust Data Grouping

… (Partial list shown)

Filter by Module &
Other Controls

Filter
by Timeline Selection
(or by Grid selection)

Click [+] for Call Stack

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

10

Intel® VTune™ Amplifier XE
Timeline Visualizes Thread Behavior

Optional: Use API to mark frames and user tasks

Optional: Add a mark during collection

CPU Time

Hovers:

Transitions
Hotspots Lightweight Hotspots Locks & Waits

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

11

Intel® VTune™ Amplifier XE
See Profile Data On Source / Asm

Time on Source / Asm

Quickly scroll to hot spots.

Click jump to scroll Asm

Quick Asm navigation:
Select source to highlight Asm

Right click for instruction
reference manual

Intel® VTune™ Amplifier XE

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

High-level Features

12

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

13

Intel® VTune™ Amplifier XE
Feature Highlights

Basic Hot Spot Analysis (Statistical Call Graph)

 Locates the time consuming regions of your application

 Provides associated call-stacks that let you know how you got to these time consuming
regions

 Call-tree built using these call stacks

Advanced Hotspot and architecture analysis

 Based on Hardware Event-based Sampling (EBS)

 Pre-defined tuning experiments

Thread Profiling

 Visualize thread activity and lock transitions in the timeline

 Provides lock profiling capability

 Shows CPU/Core utilization and concurrency information

GPU Compute Performance Analysis

 Collect GPU data for tuning OpenCL applications. Correlate GPU and CPU activities

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

14

Intel® VTune™ Amplifier XE
Feature Highlights

Attach to running processes

 Hotspot and Concurrency analysis modes can attach to running processes

System wide data collection

 EBS modes allows system wide data collection and the tool provides the ability to filter
this data

GUI

 Standalone GUI available on Windows* and Linux

 Microsoft* Visual Studio integration

Command Line

 Comprehensive support for regression analysis and remote collection

Platform & application support

 Windows* and Linux (Android, Tizen, Yocto – in the ISS)

 Microsoft* .NET/C# applications

 Java* and mixed applications

 Fortran applications

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

15

Intel® VTune™ Amplifier XE
Feature Highlights

Event multiplexing

 Gather more information with each profiling run

Timeline correlation of thread and event data

 Populates thread active time with event data collected for that thread

 Ability to filter regions on the timeline

Advanced Source / Assembler View

 See event data graphed on the source / assembler

 View and analyze assembly as basic blocks

 Review the quality of vectorization in the assembly code display of your hot spot

Provides pre-defined tuning experiments

 Predefined profiles for quick analysis configuration

 A user profile can be created on a basis of a predefined profile

User API

 Rich set of user API for collection control, events highlighting, code instrumentation,
and visualization enhancing.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data Collectors and Analysis Types

16

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

17

Intel® VTune™ Amplifier XE
Analysis Types (based on technology)

Software Collector
Any x86 processor, any virtual, no driver

Hardware Collector
Higher res., lower overhead, system wide

Basic Hotspots
Which functions use the most time?

Advanced Hotspots
Which functions use the most time?
Where to inline? – Statistical call counts

Concurrency
Tune parallelism.
Colors show number of cores used.

General Exploration
Where is the biggest opportunity?
Cache misses? Branch mispredictions?

Locks and Waits
Tune the #1 cause of slow threaded
performance – waiting with idle cores.

Advanced Analysis
Dig deep to tune bandwidth, cache
misses, access contention, etc.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

18

Intel® VTune™ Amplifier XE
Pre-defined Analysis Types

Advanced Hotspot analysis based on the
underlying architecture

User mode sampling, Threading, IO, Signaling
API instrumentation

3rd Generation Core Architecture (a.k.a
SandyBridge) analysis types

4th Generation Core Architecture (a.k.a Haswell)
analysis types

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

GUI Layout

19

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

20

Creating a Project
GUI Layout

1

2

3

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

21

Selecting type of data collection
GUI Layout

All available
analysis types

Different ways to
start the analysis

Copy the
command line to

clipboard

Helps creating
new analysis

types

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

22

Profile a Running Application
No need to stop and re-launch the app when profiling

Two Techniques:

Attach to Process:

Profile System:

- Any type of analysis

- Advanced Hotspots &
Custom EBS
- Optional: Filter by process
after collection

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

23

Summary View
GUI Layout

Clicking on the
Summary tab shows a
high level summary of

the run

Timing for the whole
application run

List of 5 Hotspot
functions

CPU Usage

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

24

Bottom-Up View
GUI Layout

Menu and
Tool bars Analysis

Type
Viewpoint currently

being used Tabs within each
result

Grid area

Stack Pane

Timeline area

Filter area

Current grouping

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

25

Top-Down View
GUI Layout Clicking on the Top-

Down Tree tab changes
stack representation in

the Grid

Top-level function and
it’s tree

Total Time
(self + children’s)

Self Time

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

26

Caller/Callee View
GUI Layout Select a function in the

Bottom-Up and find the
caller/callee

List of functions sorted
by CPU Time

List of callers and
their stacks

List of callees and
their stacks

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

27

Adding User Marks to the Timeline
GUI Controls

Start application
without data collection

Resume data collection
when needed

Observe paused region
on the Time Line

Click “Mark Timeline”
during collection

Observe the mark on
the Time Line

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Key Result Analysis and
GUI Concepts

28

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

29

Result Analysis
GUI Concepts

Viewpoints

 It is a pre-defined view that determines what needs to be displayed in the
grid and timeline for a given analysis type

 An analysis type may support more than one view points

 To change viewpoints, select a viewpoint by clicking on

Click

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
30

Result Analysis
GUI Concepts

Groupings

 Each analysis type has many viewpoints

 Each viewpoint has pre-defined groupings

 Allows you to analyze the data in different hierarchies and granularities

Click

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

31

Viewpoints and Groupings

For example, pre-defined groupings can be used to determine load
imbalance

Change to
Function/Thread

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

32

Key Concepts
Results Comparison

VTune™ Amplifier XE allows comparison of two similar runs

Extremely useful for:

 Benchmarking

 Regression analysis

 Testing

During performance optimization work source code may change

 Binary recompiled: compare based on source function

 Inside a function: compare based on functions level

 Functions changed: group by source files and compare

 Source files changed: compare by modules

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

33

Results Comparison

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Analysis Types Revisited
Lab Activities

34

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

35

Reminding the methodology
of performance profiling and tuning

The Goal: minimize the time it takes your program / module / function
to execute

• Identify Hotspots and focus on them

• It’s just a few functions (20% of code does 80% of job)

• Optimize them (with compiler or hand optimizations)

• Check for hotspots again, and find new ones

How to optimize the Hotspots?

• Maximize CPU utilization and minimize elapsed time

• Ensure CPU is busy all the time

• All Cores busy – parallelism

• Busy with useful tasks

• Optimize tasks execution

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

36

Performance profiling
Terminology

Elapsed Time
The total time your target application ran. Wall clock time at end of application
– Wall clock time at start of application

CPU Time
The amount of time a thread spends executing on a logical processor. For
multiple threads, the CPU time of the threads is summed.

Wait Time
The amount of time that a given thread waited for some event to occur, such as:
synchronization waits and I/O waits

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

37

Performance profiling
CPU Usage

Elapsed Time: 6 seconds

CPU Time: T1 (4s) + T2 (3s) + T3 (3s) = 10 seconds

Wait Time: T1(2s) + T2(2s) + T3 (2s) = 6 seconds

Thread1

Thread2

Thread3

Waiting

Waiting

Thread3 Waiting

Thread2

Thread1

1sec 1sec 1sec 1sec 1sec 1sec

Thread running

Thread waiting

2 1 3 0

CPU Usage

4

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

38

CPU Usage
How it’s presented by VTune Amplifier

Function CPU Time By CPU Utilization

My_Func() 10 s

Summary View: CPU Usage Histogram

Bottom-Up View: CPU Time

Only CPU Time measured

Wait Time is not counted
in Hotspots

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

39

Performance profiling
Overhead and spin

Thread1

Thread2

Thread3

Waiting

Waiting

Thread3

Thread2

Thread1

1sec 1sec 1sec 1sec 1sec 1sec

Thread running

Thread waiting

lib

lib

lib running or spin
Waiting

Elapsed Time: 6 seconds

CPU Time: T1 (4s) + T2 (3s) + T3 (3s) = 10 seconds

Wait Time: T1(2s) + T2(2s) + T3 (2s) = 6 seconds

Overhead and spin Time: T1(1s) + T2(1s) + T2(1s) = 3 s

Threading
library internals

2 1 3 0

CPU Usage

4

user code

Spin wait

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

40

CPU Usage
How it’s presented by VTune Amplifier

Function CPU
Time

By CPU Utilization Overhead and Spin
Time

My_Func() 10 s 3 s

Summary View: CPU Usage Histogram

Bottom-Up View: CPU Time

Overhead and Spin Time is
not counted for CPU Usage

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

41

Hotspots analysis
Hotspot functions

Function
CPU time

Thread
timeline

Hotspot
Functions

Call stack

Click [+] for
Call Stack

Adjust Data Grouping

… (Partial list shown)

Filter by Timeline
Selection (or by Grid
Selection)

Filter by Module &
Other Controls

Change
Viewpoint

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

42

Hotspots analysis
Hotspot functions by CPU usage

Coloring CPU
Time by CPU

Utilization

Overhead
and Spin

Time

Overhead and Spin
on Timeline

Double Click
Function

to View Source

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

43

Hotspots analysis
Source View

Source
View Assembly

View

Quick Asm navigation:
Select source to highlight Asm

Self and Total Time on
Source / Asm

Click jump to scroll Asm

Right click for instruction
reference manual

Quickly scroll to hot spots.
Scroll Bar “Heat Map” is an

overview of hot spots

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

44

Intel® VTune™ Amplifier XE
User APIs

User APIs

• Collection Control API

• Thread Naming API

• User-Defined Synchronization API

• Task API

• User Event API

• Frame API

• JIT Profiling API

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

45

User API

Enable you to

• control collection

• set marks during the execution of the specific code

• specify custom synchronization primitives implemented
without standard system APIs

To use the user APIs, do the following:

• Include ittnotify.h, located at <install_dir>/include

• Insert __itt_* notifications in your code

• Link to the libittnotify.lib file located at <install_dir>/lib

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

46

User API
Collection control and threads naming

Collection Control APIs

Thread naming APIs

void __itt_pause (void) Run the application without collecting data. VTune™

Amplifier XE reduces the overhead of collection, by

collecting only critical information, such as thread and

process creation.

void __itt_resume (void) Resume data collection. VTune™ Amplifier XE resumes

collecting all data.

void __itt_thread_set_name (const

__itt_char *name)

Set thread name using char or Unicode string, where

name is the thread name.

void __itt_thread_ignore (void) Indicate that this thread should be ignored from

analysis. It will not affect the concurrency of the

application. It will not be visible in the Timeline pane.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

47

User API
Collection Control Example

int main(int argc, char* argv[])

{

 doSomeInitializationWork();

 __itt_resume();

 while(gRunning) {

 doSomeDataParallelWork();

 }

 __itt_pause();

 doSomeFinalizationWork();

 return 0;

}

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

48

User API
User defined synchronization API example

long spin = 1;

. . . .

. . . .

__itt_sync_prepare((void *) &spin);

while(ResourceBusy);

 // spin wait;

__itt_sync_acquired((void *) &spin);

 // Use shared resource

__itt_sync_releasing((void *) &spin);

 // Code here should free the resource

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

49

User API
User Event APIs

• Useful to observe when certain events occur in your
application or identify how long certain regions of code take to
execute

• Event APIs enables you to annotate an application when
certain events occur

__itt_event __itt_event_create(char *, int);

__itt_event_start(__itt_event);

__itt_event_end(__itt_event);

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

50

User API
User Event APIs reference

__itt_event __itt_event_create(const

__itt_char *name, int namelen);
Create a user event type with the specified name. This API

returns a handle to the user event type that should be

passed into the following APIs as a parameter. The

namelen parameter refers to the number of characters,

not the number of bytes.

int __itt_event_start(__itt_event event);

Call this API with an already created user event handle to

register an instance of that event. This event appears in

the Timeline pane display as a tick mark.

int __itt_event_end(__itt_event event); Call this API following a call to __itt_event_start() to show

the user event as a tick mark with a a duration line from

start to end. If this API is not called, the user event

appears in the Timeline pane as a single tick mark.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

51

User API
User Event APIs example

DWORD WINAPI aiWork(LPVOID lpArg)

{

 int tid = *((int*)lpArg);

 __itt_event aiEvent;

 aiEvent = __itt_event_create("AI Thread Work",14);

 while(gRunning) {

 WaitForSingleObject(bSignal[tid], INFINITE);

 __itt_event_start(aiEvent);

 doSomeDataParallelWork();

 __itt_event_end(aiEvent);

 SetEvent(eSignal[tid]);

 }

 return 0;

}

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

52

User API
Visualizing Events in the Timeline View

User defined
task

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

53

Performance Profiling
Frame Analysis

Frame Analysis –
Analyze Long Latency Activity

Frame: a region executed repeatedly (non-overlapping).

• API marks start and finish

• Auto detect DirectX frames

Examples:

• Game – Compute next graphics frame

• Simulator – Time step loop

• Computation – Convergence loop

Application

voidalgorithm_1();
voidalgorithm_2(int myid);
doubleGetSeconds();
DWORD WINAPI do_xform (void * lpmyid);
bool checkResults();
__itt_domain* pD = __itt_domain_create (“myDomain”);

while(gRunning) {
 __itt_frame_begin_v3(pD, NULL);
 . . .
 //Do Work
 . . .
 __itt_frame_end_v3(pD, NULL);
}

for (int k = 0; k < N; ++k) {
int ik = i*N + k;
int kj = k*N + j;
c2[ij] += a[ik]*b[kj];
}

Region (Frame)

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

54

User API
Frame APIs reference

__itt_domain* __itt_domain_create(
const __itt_char *name);

Create a domain with a domain name.
Since the domain is expected to be static over the application's
execution time, there is no mechanism to destroy a domain. Any
domain can be accessed by any thread in the process, regardless of
which thread created the domain. This call is thread-safe.

void __itt_frame_begin_v3(const
__itt_domain *domain, __itt_id *id);

Define the beginning of the frame instance.
A __itt_frame_begin_v3 call must be paired with a
__itt_frame_end_v3 call.
Successive calls to __itt_frame_begin_v3 with the same ID are
ignored until a call to __itt_frame_end_v3 with the same ID.
•domain is the domain for this frame instance.
•id is the instance ID for this frame instance, or NULL.

void __itt_frame_end_v3(const
__itt_domain *domain, __itt_id *id);

Define the end of the frame instance.
A __itt_frame_end_v3 call must be paired with a
__itt_frame_begin_v3 call. The first call to __itt_frame_end_v3 with
a given ID ends the frame. Successive calls with the same ID are
ignored, as are calls that do not have a matching
__itt_frame_begin_v3 call.
•domain - The domain for this frame instance
•id - The instance ID for this frame instance, or NULL for the current
instance.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

55

User API
Frame APIs example

 __itt_domain* pD = __itt_domain_create ("SimDomain");

 while(gRunning) {

 __itt_frame_begin_v3(pD, NULL);

 start = clock();

 //Wait all threads before moving into the next frame

 WaitForMultipleObjects(FUNCTIONAL_DOMAINS, eSignal, TRUE,

INFINITE);

 stop = clock();

 //Give all threads the "go" signal

 for (int i = 0; i < FUNCTIONAL_DOMAINS; i++)

 SetEvent(bSignal[i]);

 if (frame % NETWORKCONNETION_FREQ == 0) {

 //Start network thread

 SetEvent(bNetSignal);

 }

 __itt_frame_end_v3(pD, NULL);

 }

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

56

Frame Analysis
Summary View / Frame Rate Chart

Adjust the frame rate then Apply changes

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

57

Frame Analysis
Find Slow Frames With One Click

(1) Regroup Data

… (Partial list shown)

Before: List of Functions Taking Time

After: List of Slow Frames

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

58

Frame Analysis
Find Slow functions in slow frames

Result:
Functions taking a lot of time in slow frames

(1) Only show slow frames

(2) Regroup: Show functions

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

59

User API
Task APIs

• A task is a logical unit of work performed by a
particular thread

• Tasks can be nested

• You can use task APIs to assign tasks to threads

• One thread executes one task at a given time

• Tasks may correspond to functions, scopes, or a case
block in a switch statement

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

60

User API
Task APIs reference

Use This Primitive To Do This

void __itt_task_begin (const __itt_domain
*domain, __itt_id taskid, __itt_id parentid,
__itt_string_handle *name)

Create a task instance on a thread. This
becomes the current task instance for that
thread. A call to __itt_task_end() on the same
thread ends the current task instance.

void __itt_task_end (const __itt_domain
*domain)

End a task instance on a thread.

Parameter Description

__itt_domain The domain of the task.

__itt_id taskid This is a reserved parameter.

__itt_id parentid This is a reserved parameter.

__itt_string_handle The task string handle.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

61

User API
Task APIs example

__itt_domain* domain = __itt_domain_create(L"Task Domain");

__itt_string_handle* UserTask = __itt_string_handle_create(L"UserTask");

__itt_string_handle* UserSubTask = __itt_string_handle_create(L“UserSubTask");

int main(int argc, char* argv[])

{

 ...

 __itt_task_begin (domain, __itt_null, __itt_null, UserTask);

 //create many threads to call work()

 __itt_task_end (domain);

 ...

}

work()

{

__itt_task_begin (domain, __itt_null, __itt_null, UserSubTask);

do_foo();

__itt_task_end (domain);

return 0;

}

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

62

Using Task API
Hotspots analysis – Bottom-up view

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

63

Using Task API
Hotspots analysis – Task view

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

64

Command Line Interface

Command line (CLI) versions exist on Linux* and Windows*

 CLI use cases:

 Test code changes for performance regressions

 Automate execution of performance analyses

 CLI features:

 Fine-grained control of all analysis types and options

 Text-based analysis reports

 Analysis results can be opened in the graphical user interface

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

65

Command Line Interface
Examples

Display a list of available analysis types and preset configuration levels

Run Hot Spot analysis on target myApp and store result in default-
named directory, such as r000hs

Run the Cuncurrency analysis, store the result in directory r001par

amplxe-cl –collect-list

amplxe-cl –c hotspots -- myApp

amplxe-cl -c concurrency -result-dir r001par -- myApp

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

66

Command Line Interface
Reporting

$> amplxe-cl –report summary –r

/home/user1/examples/lab2/r003cc

Summary

Average Concurrency: 9.762

Elapsed Time: 158.749

CPU Time: 561.030

Wait Time: 190.342

CPU Usage: 3.636

Executing actions 100 % done

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

67

Command Line Interface
Gropof-like output

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

68

Command Line Interface
CSV output

$> amplxe-cl -report hotspots -csv-delimiter=comma -format=csv -

report-out=testing111 -r r003cc

Function,Module,CPU Time,Idle:CPU Time,Poor:CPU Time,Ok:CPU

Time,Ideal:CPU Time,Over:CPU Time

CLHEP::RanecuEngine::flat,test40,50.751,0,0.050,0.081,0.080,50.541

G4UniversalFluctuation::SampleFluctuations,test40,32.730,0,0.030,0.

070,0.010,32.620

sqrt,test40,19.060,0,0.010,0.070,0.030,18.951

G4Track::GetVelocity,test40,15.330,0,0.030,0.030,0.040,15.230

G4VoxelNavigation::LevelLocate,test40,14.460,0,0.020,0.010,0.040,14

.390

G4Step::UpdateTrack,test40,14.090,0,0,0.030,0.020,14.040

G4NavigationLevelRep::G4NavigationLevelRep,test40,13.721,0,0.030,0.

020,0.040,13.631

exp,test40,13.438,0,0.038,0.010,0.060,13.330

log,test40,13.340,0,0.180,0.020,0.110,13.030

G4PhysicsVector::GetValue,test40,11.970,0,0.020,0.020,0.050,11.880

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

69

Remote Data Collection

Local System
VTune™ Amplifier XE

Full user interface

Remote System
Lightweight command line

collector ssh

1. Setup the experiment using
GUI locally

2. Configure remote target
connection*

3. Specify application to run

4. Run analysis and get results
copied to the Host
automatically.

*Need to establish a passwordless ssh-connection

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

70

Remote Data Collection
Advanced

One typical model

• Collect on Linux, analyze and display on Windows

 The Linux machine is target

• Collect data on Linux system using command line tool

 Doesn’t require a license

• Copy the resulting performance data files to a
Windows* system

• Analyze and display results on the Windows* system

 Requires a license

Local System
VTune™ Amplifier XE

Full user interface

Remote System Lightweight
command line collector

Copy command line

Copy results file

1. Setup the experiment using
GUI locally

2. Copy command line
instructions to paste buffer

3. Open remote shell on the
target system

4. Paste command line,
run collection

5. Copy result to your system

6. Open file using local GUI

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

71

Summary

The Intel® VTune Amplifier XE can be used to find:

 Source code for performance bottlenecks

 Characterize the amount of parallelism in an application

 Determine which synchronization locks or APIs are limiting the parallelism in
an application

 Understand problems limiting CPU instruction level parallelism

 Instrument user code for better understanding of execution flow defined by
threading runtimes

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

72

Questions?

http://www.guystuffcounseling.com/Portals/31983/images/Marriage Counselor - Questions & Answers.jpg

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

73

