
Follow Ups…

Date: 10-07-2015

1

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• #pgragma fenv_access
Informs about possibly changed FP environment; requires strict FP
model (see fenv.h)

• Block-wise control:
#pragma float_control(…,[on|off])
Turn on/off FP model settings

Examples:

 #pragma float_control(except,[on|off])
Compiler has to expect/handle FP exceptions
Alternative: use strict or except FP model

 #pragma float_control(fma,[on|off])
FP contractions are allowed/disallowed
Alternative: use strict FP model; –no-fma or /Qfma-

Pragmas (C/C++ only)

2
7/10/2015

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• #pragma float_control(…,[on|off]) currently does not map to
-fp-model options directly…

• Use the following mapping as workaround:

• -fp-model fast:
#pragma float_control (precise, off)

• -fp-model precise:
#pragma float_control (precise, on)

• -fp-model strict:
#pragma fenv_access (on)

#pragma float_control (except, on)

Pragmas (C/C++ only) - Mapping

3
7/10/2015

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Syntax: C++

 Fortran

 BLOCK_LOOP enables greater control over optimizations on specific DO/for
loop inside a nested loop

 Uses loop blocking technique to separate large iteration counted loops into
smaller iteration groups

 Smaller groups can increase efficiency of cache space use and augment
performance

 Works seamlessly with other directives including SIMD

Cache/Loop blocking:
https://software.intel.com/en-us/node/540516
https://software.intel.com/en-us/articles/cache-blocking-techniques

4

Loop Blocking Pragma/Directive

#pragma block_loop

[clause[,clause]...]

#pragma noblock_loop

!DIR$ BLOCK_LOOP [clause[[,]

clause]...]

!DIR$ NOBLOCK_LOOP

clause:

 factor (expr)

 level (levels)

 private (var1

[,var2]...

https://software.intel.com/en-us/node/540516
https://software.intel.com/en-us/node/540516
https://software.intel.com/en-us/node/540516
https://software.intel.com/en-us/node/540516
https://software.intel.com/en-us/node/540516
https://software.intel.com/en-us/articles/cache-blocking-techniques
https://software.intel.com/en-us/articles/cache-blocking-techniques
https://software.intel.com/en-us/articles/cache-blocking-techniques
https://software.intel.com/en-us/articles/cache-blocking-techniques
https://software.intel.com/en-us/articles/cache-blocking-techniques
https://software.intel.com/en-us/articles/cache-blocking-techniques
https://software.intel.com/en-us/articles/cache-blocking-techniques
https://software.intel.com/en-us/articles/cache-blocking-techniques
https://software.intel.com/en-us/articles/cache-blocking-techniques

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

5

Loop Blocking Sample

#pragma block_loop factor(250) level(2)
for (i=0; i < m; i++)
{

 for (j=0; j < m; j++)
 {
 c[i]+=a[i][j]*b[j];
 }
}

for (jj=0;jj<m/250+1;jj++)

{
for (i=0; i < m; i++)

 {
 for (j=jj*250; j < min((jj+1)*250,m);j++)

 {
 c[i] += a[i][j]*b[j];

 }

 }

}

Original Source Code:

Outline of code after
compiler loop
transformations:

Note: It is not always safe

to interchange the iteration

variables due to

dependencies between

statements for the order

they execute. This safety

check will be performed by

the compiler!

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

6
7/10/2015

