
HPC codes modernization using vector
and threading parallelism

Zakhar A. Matveev, PhD,

Intel Russia, Intel Software and Services Group

July‘ 2015, CERN OpenLab

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Acknowledgments

2

This foildeck re-uses some of content created by:

- Kevin O’Leary, Dick Kaiser, Stephen Blair-Chapel

- James Reinders and Arch D. Robison

- Intel® Compiler architects

- Geoff Lowney and Victor Lee (SIMD conference keynotes)

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Motivation

3

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The “Free Lunch” is over, really
Processor clock rate growth halted around 2005

4

Source: © 2014, James Reinders, Intel, used with permission

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The “Free Lunch” is over, really
Processor clock rate growth halted before 2005

5

Source: © 2014, James Reinders, Intel, used with permission

Real message:
Software has to be changed

To keep performance growth curve and to
effectively exploit hardware.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The “Free Lunch” is over, really
Processor clock rate growth halted before 2005

6

Source: © 2014, James Reinders, Intel, used with permission

Real message:
Software has to be changed

To keep performance growth curve and to
effectively exploit hardware.

Performance Growth Curve?

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

The “Free Lunch” is over, really
Processor clock rate growth halted around 2005

7

Source: © 2014, James Reinders, Intel, used with permission

Performance Growth Curve???

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Moore’s Law Is STILL Going Strong
Hardware performance continues to grow exponentially

8

“We think we can continue Moore's Law for at least another 10 years."

Intel Senior Fellow Mark Bohr, 2015

1980 1990 2000 2010

1
e

+
0

0
1

e
+

0
2

1
e

+
0

4
1

e
+

0
6

Processor scaling trends

dates

R
e

la
ti
v
e

 s
c
a

li
n

g

Transistors

Clock

Power

Performance

Performance/W

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Xeon®
processor

64-bit

Intel® Xeon®
processor

5100 series

Intel® Xeon®
processor

5500 series

Intel® Xeon®
processor

5600 series

Intel® Xeon®
processor

code-named

Sandy Bridge
EP

Intel® Xeon®
processor

code-named

Ivy Bridge
EP

Intel® Xeon®
processor
code-named

Haswell
EP

Core(s) 1 2 4 6 8 12 18

Threads 2 2 8 12 16 24 36

SIMD Width 128 128 128 128 256 256 256

Intel® Xeon Phi™
coprocessor

Knights
Corner

Intel® Xeon Phi™
processor &
coprocessor

Knights
Landing1

61 60+

244

512

*Product specification for launched and shipped products available on ark.intel.com. 1. Not launched or in planning.

More cores . More Threads . Wider vectors

9

High Performance Software has to be changed
to exploit both:

• Threading parallelism
• Vector data parallelism

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000

O
p

ti
o

n
s

P
e

r
Se

c

2012
Intel® Xeon™

Processor

E5-2600
family formerly

codenamed

Sandy Bridge

2013
Intel® Xeon™

Processor

E5-2600 v2
family formerly

codenamed

Ivy Bridge

2010
Intel® Xeon™

Processor

X5680
formerly

codenamed

Westmere

2007
Intel® Xeon™

Processor

X5472
formerly

codenamed

Harpertown

2009
Intel® Xeon™

Processor

X5570
formerly

codenamed

Nehalem

2014
Intel® Xeon™

Processor

E5-2600 v3
family formerly

codenamed

Haswell

179x

B
in

o
m

ia
l

O
p

ti
o

n
s

P
e

r
S

e
c.

 S
P

(H

ig
h

e
r

is
 B

e
tt

e
r)

Untapped Potential Can Be Huge!

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more information go to http://www.intel.com/performance

Threaded Vectorized

 

 X

X 

X X

10

Configurations for
Binomial Options SP

at the end
of this presentation

4C 6C 8C 12C 14C 4C

4 * SP 4*SP 4*SP 8*SP 8*SP 16*SP 32*SP

60C+

http://www.intel.com/performance

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Multi-Threading and Vectorization =
Huge Potential

11

Current Intel Xeon processor
 12 cores
x 2 hyper-threads
x 8 lane (SP) vector unit per thread (another x2 for FMA)

 = 384-folds parallelism for single socket

Let’s do some accounting..

Intel Many Integrated Core architecture
 > 60 cores
x ?? independent threads per core
x 16 lane (SP) vector unit per thread (x2 for FMA)

 = parallel heaven

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

14C

0

20 000

40 000

60 000

80 000

100 000

120 000

140 000

160 000

O
p

ti
o

n
s

P
e

r
Se

c

2012
Intel® Xeon™

Processor

E5-2600
family formerly

codenamed

Sandy Bridge

2013
Intel® Xeon™

Processor

E5-2600 v2
family formerly

codenamed

Ivy Bridge

2010
Intel® Xeon™

Processor

X5680
formerly

codenamed

Westmere

2007
Intel® Xeon™

Processor

X5472
formerly

codenamed

Harpertown

2009
Intel® Xeon™

Processor

X5570
formerly

codenamed

Nehalem

2014
Intel® Xeon™

Processor

E5-2600 v3
family formerly

codenamed

Haswell

179x

B
in

o
m

ia
l

O
p

ti
o

n
s

P
e

r
S

e
c.

 S
P

(H

ig
h

e
r

is
 B

e
tt

e
r)

The Gap Untapped Potential Can Be Huge!
Threaded + Vectorized can be much faster than either one alone

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark,
are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult
other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other
products. For more information go to http://www.intel.com/performance

Threaded Vectorized

 

 X

X 

X X

12

Many codes
are still here 4C 6C 8C 12C 4C

4 * SP 4*SP 4*SP 8*SP 8*SP 16*SP

http://www.intel.com/performance

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Don’t use a single Vector lane/thread!
Un-vectorized and un-threaded software will under perform

13

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Permission to Design for All Lanes
Threading and Vectorization needed to fully utilize modern hardware

14

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Parallel Programming
for multi-core and manycore processors

15

B

C

A

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Parallel Resources

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

Interconnect/LLC

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

C
o

re

Interconnect/LLC

Mciroprocessor Mciroprocessor Node

Cluster

ALU ALU ALU ALU

SIMD ALUs

Thread Thread

ALU ALU ALU ALU

SIMD ALUs

Core

Cluster → Node → Sockets → Processor/Co-processor → Core → Thread → SIMD (Vector)

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

threaded

scalar vector

serial

scalar

threaded

serial

vector

Parallel, Fast Serial

Multicore + Vector

Leadership Today and Tomorrow

Most Commonly Used
Parallel Processor*

Many Core

Support for 512 bit vectors

Higher memory bandwidth

Common SW programming

Optimized for Highly-
Vectorizable Parallel Apps

*Based on highest volume CPU in the IDC HPC Qview Q1’13

Next generation Intel Xeon Phi (Knights Landing)

Targeted for Highly-Vectorizable, Parallel Apps

+

Single Source
Code

Optimization

17

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

A Paradigm Shift for Highly-Parallel
Server Processor and Integration are Keys to Future

Coprocessor

Fabric

Memory

Memory Bandwidth
~500 GB/s STREAM

Memory Capacity
Over 25x* KNC

Resiliency
Systems scalable to >100 PF

Power Efficiency
Over 25% better than card1

I/O
Up to 100 GB/s with int fabric

Cost
Less costly than discrete parts1

Flexibility
Limitless configurations

Density
3+ KNL with fabric in 1U3

Knights Landing

*Comparison to 1st Generation Intel® Xeon Phi™ 7120P Coprocessor (formerly codenamed Knights Corner)
1Results based on internal Intel analysis using estimated power consumption and projected component pricing in the 2015 timeframe. This analysis is provided for informational
purposes only. Any difference in system hardware or software design or configuration may affect actual performance.
2Comparison to a discrete Knights Landing processor and discrete fabric component.
3Theoretical density for air-cooled system; other cooling solutions and configurations will enable lower or higher density.

Server Processor

18

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Today’s Parallel Investment Carries Forward

MKL MPI TBB

OpenMP Cilk
Plus™ OpenCL

KNL Enabled Performance
Libraries & Runtimes

AVX-512

Cache Mode For
High Bandwidth Memory

KNL Enabled Compilers

MOST optimizations carry
forward with a recompile

KNL
Enhance-

ments

(memory,
architecture,
bandwidth,

etc.)

Recompile Tuning

Incremental
tuning gains

Native
or

Symmetric
or

Offload

Knights Landing

1st Generation
Intel® Xeon Phi™

Coprocessor

Sustained threading, vectorization, cache-blocking and more

19

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

20

Recompile?

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Today’s Parallel Investment Carries Forward

MKL MPI TBB

OpenMP Cilk
Plus™ OpenCL

KNL Enabled Performance
Libraries & Runtimes

AVX-512

Cache Mode For
High Bandwidth Memory

KNL Enabled Compilers

MOST optimizations carry
forward with a recompile

KNL
Enhance-

ments

(memory,
architecture,
bandwidth,

etc.)

Recompile Tuning

Incremental
tuning gains

Native
or

Symmetric
or

Offload

Knights Landing

1st Generation
Intel® Xeon Phi™

Coprocessor

Sustained threading, vectorization, cache-blocking and more

21

Recompile and tune “recipe” will only work if
“parallel investment” has been made already.

Software has to be changed.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How could we program these parallel
machines?

22

B

C

A “Three Layer Cake”

“abstracts” common
hybrid parallelism

programming
approaches

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How could we program these parallel
machines?

23

B

C

A A – Message

Passing

B – Fork-Join

C- SIMD

A: exploit multiple
nodes, distributed
memory

B – exploit multiple
cores, hardware
threads

C- exploit vector
units

Parallelism type Exploiting hardware* :

* - alternate hardware mappings also possible

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How could we program these parallel
machines?

24

B

C

A A – MPI, tbb::flow,

PGAS

B – OpenMP4.x,
Cilk Plus, TBB

C - OpenMP4.x,
Cilk Plus

Programming models Software tools

Cluster Edition

Professional Edition

Implementing the Cake

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

How could we program these parallel
machines?

25

B

C

• Different methods exist
• OpenMP4.x:

• Industry standard

• C/C++ and Fortran

• Supported by Intel Compiler
(14, 15, 16), GCC 4.9, …

• Both levels of microprocessor
parallelism

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 #pragma omp parallel for

 for (int y = 0; y < ImageHeight; ++y){

 #pragma omp simd

 for (int x = 0; x < ImageWidth; ++x){
 count[y][x] = mandel(in_vals[y][x]);
 }
 }

 2 level parallelism decomposition with
OpenMP4.x: image processing example

B

C

26

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 #pragma omp parallel for

 for (int i = 0; i < X_Dim; ++i){

 #pragma omp simd

 for (int m = 0; x < n_velocities; ++m){
 next_i = f(i, velocities(m));
 X[i] = next_i;
 }
 }

B

C

2L parallelism decomposition with
OpenMP4.x: fluid dynamics example

27

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Programming
for threading parallelism

28

fork

join

distribute work

distribute work

barrier

barrier

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Knights Landing Architectural Diagram

Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale and does not

include all functional areas of the CPU, nor does it represent actual component layout.

DMI

MCDRAM MCDRAM MCDRAM

MCDRAM

MCDRAM

MCDRAM MCDRAM MCDRAM

DDR4

DDR4

DDR4

Wellsburg

PCH

Up to
72 cores

HFI

DDR4

DDR4

DDR4

PCIe Gen3

x36

6 channels

DDR4

Up to

384GB

Common with

Grantley PCH

2 ports Storm Lake

Integrated Fabric

On-package

50 GB/s bi-directional

Up to 16GB high-bandwidth on-
package memory (MCDRAM)

Exposed as NUMA node

~500 GB/s sustained BW

Up to 72 cores

2D mesh architecture

Over 3 TF DP peak

Full Xeon ISA compatibility through AVX-512

~3x single-thread vs. compared to Knights Corner

Core Core

2
VPU

2
VPU

1
M

B
 L

2

H
U

B

Tile

M
ic

ro
-C

o
a

x
C

a
b

le

(I
F

P
)

M
ic

ro
-C

o
a

x
C

a
b

le

(I
F

P
)

2x 512b VPU per core
(Vector Processing Units)

Based on Intel® Atom Silvermont processor
with many HPC enhancements

Deep out-of-order buffers

Gather/scatter in hardware

Improved branch predition

4 threads/core

High cache bandwidth

& more
29

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Threading Recommendation #1: Pick a
threading model. Don’t use raw threads
Don’t use raw threads.

 Just trouble on almost all counts: no scalability, no ease of programming, no
composability.

 Usually no portability and hardware awareness

 Exception: use raw threads if their purpose is “to wait for things to happen”
as opposed to “accelerate a computation”.

Use threading parallel programming models.

 Simpler to use and support

 Future-proof scalability

 Minimize threading overheads

 Portable

 Threading models implementations are optimized on low-level and could be
hardware-aware.

30

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Family tree (not so HPC-centric)

31

Cilk
space efficient scheduler
cache-oblivious algorithms

Threaded-C
 continuation tasks
task stealing

Languages

Chare Kernel
small tasks

OpenMP*
fork/join tasks

JSR-166
(FJTask)
containers

OpenMP taskqueue
while & recursion

Intel® TBB 1.0

STL
generic programming

STAPL
recursive ranges

ECMA .NET*
parallel iteration classes

Libraries

1988

2001

2006

1995

Pragmas

2009 Microsoft® PPL Intel® TBB 2.2

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Threading Recommendation #2: Pick a
threading model. OpenMP

If you have loopy HPC code, want single standardized
model for threads and vector, Fortran and C++, and
don’t care about threads “composability”

.. Then Use OpenMP.

 Industry Standard

 Will cover Threading and Vector parallelism for you.

 It is widely portable and often “easy” to use.

 Has some inherent composability problems for nested
parallelism (OpenMP3.x, 4.x is improving)

32

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

What is OpenMP?

HPC industry standard:

 Portable across systems and vendors

 Maintained by the OpenMP ARB

 a consortium of industry (Intel, IBM, Cray, ..) and academic institutions
(LLNL, ANL, Aachen, BSC, …)

API for C/C++/Fortran for programming shared-memory systems

 Directive based

 Provides support for

 (Threading) Data parallelism

 (SIMD vector) Data parallelism

 (Threading) Task parallelism

 Synchronizations

33

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OpenMP in a nutshell: threading data
parallelism

#pragma omp parallel

{

 #pragma omp for

 for (i = 0; i <N ; i++)

 {…}

 #pragma omp for

 for (i = 0; i < N; i++)

 {…}

}
34

fork

join

distribute work

distribute work

barrier

barrier

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Threading Recommendation #3: Pick a
threading model. TBB or Cilk™Plus

… Else Use TBB or Cilk™Plus

 From technology standpoint could be seen as similar

 Both are based on work-stealing.

 Both do nested threading parallelism well and compose
cleanly

 Both have an exception-handling model

Up close there are some significant differences
between TBB and Cilk™Plus

35

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

TBB vs. Cilk™Plus:
 Cilk

Cilk:

 Will cover Threading and Vector parallelism for you

– but as of right now only for x86 C, C++

 Cilk syntax is easier than TBB, particularly if you are not
comfortable with C++ lambda functions.

 Cilk semantics are cleaner than TBB. E.g. serial elision
properties and hyperobjects.

 Cilk can be used directly in C code.

 Cilk requires compiling with Intel compiler or experimental gcc
branch

36

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

TBB vs. Cilk™Plus:
 TBB
TBB:

 TBB is more portable – e.g. you can use Microsoft’s compiler or
any version of g++ if you insist.

 TBB supports more flexible forms of parallelism such as
pipelines and flowgraphs.

 This is either a feature or hanging rope depending on the programmer.

 TBB exposes lots of low-level hooks for writing your own forms of
parallelism

 TBB is directly callable only from C++.

 For Vector Parallelism you will have to use something else
(because TBB is NOT a compiler technology)

37

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Threading Recommendation #4: Pick a
Concurrent container
If you need concurrent containers, scalable
memory allocator, or atomic operations:

 Use the corresponding TBB components.

 You can mix these with any of the threading models.

38

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Ideal scalability : linear

 The speedup increases linear

 to the number of cores

Scalability can be limited by:

- Serial execution (Amdahl’s law)

- Load balancing

- Dataset size (Gustafson‘s law)

- Task granularity

 vs. runtime scheduler overheadeads

- Lock contention

- Other hardware limits (memory-bound, uarch,…)

39

poor (worse than serial)

Application

Performance

“Scaling”

1 2 4 8

1X

2X

4X

8X

Number of processor cores

Predict parallel behavior:
 Scalability graph

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Describes the upper bound of parallel speedup
40

(1
-P

)
P

T
 s
e
ri
a

l

(1
-P

)

P/2

n = number of processors

Tparallel = {(1-P) + P/n} Tserial + O

Scaling = Tserial / Tparallel

0.5 + 0.25

1.0/0.75 = 1.33

n = 2 n = ∞

Predict parallel behavior:
 Amdahl’s law

Serial code limits scaling

P/∞

…

0.5 + 0.0

1.0/0.5 = 2.0

Thread1

Task1

Thread2

Task2

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

41

(1
-P

)
P

T
 s
e
ri
a

l

(1
-P

)

P*0.75

1.0/0.75 = 1.33

n = 2

1.0/0.86 = 1.16

Predict parallel behavior:
 Load balancing

Thread1

Task1

Thread2

Task2

Loop iterations (tasks or “task chunks” in general) may not be
distributed evenly

Load balancing limits scaling

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

42

(1
-P

)
P

T
 s
e
ri
a

l

(1
-P

)

P*0.80

n = 2

Predict parallel behavior: Lock
contention

Thread1

Task1

Thread2

Task2

Each task alternates between unlocked execution and locked execution

Lock contention limits scaling

1.0/0.90 = 1.11x

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Parallel behavior:
 IS LIMITED / DEFINED BY:

CPU bound work, parallelizable (serial code
impact and Amdahl’s law)
Dataset size (Gustafson’ law)
Task Granularity (& chunking)
Load balancing
Lock contention
Parallel Runtime Overheads
Other hardware limits (memory-bound,
uarch,…)

43

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Advisor Suitability

Analyze the potential benefit of your proposal

44

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Programming
for vector SIMD parallelism

45

Vector
Processing

Ci

+

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

Ci

Ai Bi

VL

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why should we care about Vector SIMD
parallelism at all?

46

4C 6C 8C 12C 14C 4C

4 * SP 4*SP 4*SP 8*SP 8*SP 16*SP 32*SP

60C+

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Advanced Vector Extensions

Since 2001:

128-bit Vectors
AVX: 2X flops: 256-bit wide floating-point vectors

AVX2: FMA (2x peak flops)

256-bit integer SIMD. “Gather” Instructions.

Sandy Bridge

(32 nm Tock)

2010 2011 2012 2013

Ivybridge

(22nm Tick)

Haswell

(22 nm Tock)

Knights Landing

/Future Xeon

8X peak FLOPs over 4 generations

AVX-512: 512-bit vectors

32 registers, Masking

47

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Westmere Sandybridge Ivybridge Haswell Knights Landing

vector

scalar

Instruction Growth

2014

Approximate numbers

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

This is old story. Even for x86.

48

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why SIMD vector parallelism?

49

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why SIMD vector parallelism?

50

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why SIMD vector parallelism?

51

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

512b AVX512

64SP / 32 DP
 Flops/Cycle (FMA)

256b AVX2

32 SP / 16 DP
 Flops/Cycle (FMA)

AVX512

512-bit FP/Integer

32 registers

8 mask registers

Embedded rounding

Embedded broadcast

Scalar/SSE/AVX “promotions”

HPC additions

Transcendental support

Gather/Scatter

AVX AVX2

256-bit basic FP

16 registers

NDS (and AVX128)

Improved blend

MASKMOV

Implicit unaligned

Float16 (IVB 2012)

256-bit FP FMA

256-bit integer

PERMD

Gather

SNB
2011

HSW
2013

Future Processors (KNL & future

Xeon)

Intel® AVX Technology

256b AVX

16 SP / 8 DP
 Flops/Cycle

52

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

53

Intel® SSE and AVX-128 Data Types

4x floats SSE

16x bytes

8x 16-bit shorts

4x 32-bit integers

2x 64-bit integers

1x 128-bit(!) integer

2x doubles

SSE-2

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

54

AVX-256 Data Types

Intel®

AVX2

8x floats

4x doubles
Intel®

AVX

32x bytes

16x 16-bit shorts

8x 32-bit integers

4x 64-bit integers

2x 128-bit(!) integer

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Data Types for Intel® MIC
Architecture

16x floats

8x doubles

16x 32-bit integers

MIC

7/17/2015 55

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

8x Double-Precision speed-up over SSE
with Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Support

Higher performance for the most demanding computational tasks

- Significant leap to 512-bit SIMD support for
processors

- Intel® Compilers and Intel® Math Kernel Library
include AVX-512 support

- Strong compatibility with AVX

- Added EVEX prefix enables additional
functionality

- Appears first in future Intel® Xeon Phi™
coprocessor, code named Knights Landing

x

x

x

56

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

vector data operations:
data operations done in parallel

void v_add (float *c,

 float *a,

 float *b)

{

 for (int i=0; i<= MAX; i++)

 c[i]=a[i]+b[i];

}

Loop:
1. LOAD a[i] -> Ra
2. LOAD b[i] -> Rb
3. ADD Ra, Rb -> Rc
4. STORE Rc -> c[i]
5. ADD i + 1 -> i

57

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

vector data operations:
data operations done in parallel

void v_add (float *c,

 float *a,

 float *b)

{

 for (int i=0; i<= MAX; i++)

 c[i]=a[i]+b[i];

}

Loop:
1. LOAD a[i] -> Ra
2. LOAD b[i] -> Rb
3. ADD Ra, Rb -> Rc
4. STORE Rc -> c[i]
5. ADD i + 1 -> i

Loop:
1. LOADv4 a[i:i+3] -> Rva
2. LOADv4 b[i:i+3] ->

Rvb
3. ADDv4 Rva, Rvb ->

Rvc
4. STOREv4 Rvc ->

c[i:i+3]
5. ADD i + 4 -> i

58

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

vector data operations:
data operations done in parallel

void v_add (float *c,

 float *a,

 float *b)

{

 for (int i=0; i<= MAX; i++)

 c[i]=a[i]+b[i];

}

Loop:
1. LOAD a[i] -> Ra
2. LOAD b[i] -> Rb
3. ADD Ra, Rb -> Rc
4. STORE Rc -> c[i]
5. ADD i + 1 -> i

We call this “vectorization”

Loop:
1. LOADv4 a[i:i+3] -> Rva
2. LOADv4 b[i:i+3] ->

Rvb
3. ADDv4 Rva, Rvb ->

Rvc
4. STOREv4 Rvc ->

c[i:i+3]
5. ADD i + 4 -> i

59

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Many Ways to Vectorize

Ease of use

Compiler:
Auto-vectorization (no change of code)

Programmer control

Compiler:
Auto-vectorization hints (#pragma vector, …)

SIMD intrinsic class
(e.g.: F32vec, F64vec, …)

Vector intrinsic
(e.g.: _mm_fmadd_pd(…), _mm_add_ps(…), …)

Assembler code
(e.g.: [v]addps, [v]addss, …)

Explicit (user mandated) Vector Programming:

 OpenMP4.x, Intel Cilk Plus

7/17/2015 60
60

Cilk Plus Array Notation (CEAN)

 (a[:] = b[:] + c[:])

Use Performance Libraries

 (MKL, IPP)

explicit

instruction
aware

implicit

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Thread Level Parallelism SIMD Parallelism

OpenMP4.x: threading and vectors

7/17/2015 61

Ease of use

Programmer
control

Auto-Parallel
invoked by compiler switch,
some loops parallelized
automatically by compiler
`

Auto-Vectorization
invoked at O2, some loops
vectorized automatically by
compiler, developer can
provide a few hints to the
compiler

Parallelization using OpenMP*
threading
Developer guides
parallelization via statements
and lexicon of clauses

Vectorization using OpenMP*
4.0 simd
Developer guides vectorization
via statements and lexicon of
clauses

Parallelization using Posix* or
Windows* Threads

Vectorization using Intrinsics

61

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Explicit Vector Programming with OpenMP 4.0

62

In
p

u
t:

 C
/C

+
+

/F
O

R
T

R
A

N
 s

o
u

rc
e

 c
o

d
e

Vectorizer

Intel® SSE Intel® AVX Intel® MIC

Map vector parallelism to vector ISA

V
e

ct
o

r
p

a
rt

 o
f

O
p

e
n

M
P

*
4

.0
 e

xt
e

n
si

o
n

In
p

u
t:

 C
/C

+
+

/F
O

R
T

R
A

N
 s

o
u

rc
e

 c
o

d
e

Vectorizer

Intel® SSE Intel® AVX Intel® MIC

Optimize and
Code Generation
Optimization and
Code Generation

Vectorizer makes
retargeting easy!

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Compile with –xavx (Intel® AVX; Sandy Bridge etc)

Compile with –xcore-avx2 (Intel® AVX2; Haswell)

 Intel processors only (Use -mavx, -march=core-avx2 for non-Intel)

 Vectorization works just as for SSE

 Best if 32 byte aligned

 More loops can be vectorized than with SSE

 Individually masked data elements

 More powerful data rearrangement instructions

-axavx (-axcore-avx2) gives both SSE2 and newer ISA code
paths

 (!) but use –x or –m switches to modify the default SSE2 code path

 Eg –axcore-avx2 –xavx to target both Haswell and Sandy Bridge
 (/Qaxcore-avx2 /Qxavx on Windows*)

Math libraries may target AVX and/or AVX2 automatically at runtime

63

Compiling for Intel® AVX(2)

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD Pragma Notation

OpenMP 4.0: #pragma omp simd [clause [,clause] …]

• Targets loops

• Can target inner or outer canonical loops

• Developer asserts loop is suitable for SIMD

• The Intel Compiler will vectorize if possible (will ignore
dependency or efficiency concerns)

• Use when you KNOW that a given loop is safe to vectorize

• Can choose from lexicon of clauses to modify behavior of SIMD
directive

• Developer should validate results (correctness)

• Just like for race conditions in OpenMP* threading loops

• Minimizes source code changes needed to enforce vectorization

64

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OMP SIMD Pragma Clauses
reduction(operator:v1, v2, …)

 v1 etc are reduction variables for operation “operator”

 Examples include computing averages or sums of arrays into a single
scalar value : reduction (+:sum)

linear(v1:step1, v2:step2, …)

 declares one or more list items to be private to a SIMD lane and to
have a linear relationship with respect to the iteration space of a
loop : linear (i:2)

safelen (length)

 no two iterations executed concurrently with SIMD instructions can
have a greater distance in the logical iteration space than this value

 Typical values are 2, 4, 8, 16

Refer to OpenMP 4.0 Specification.
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

65

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

OMP SIMD Pragma Clauses cont…
aligned(v1:alignment, v2:alignment)

 declares that the object to which each list item points is aligned to the
number of bytes expressed in the optional parameter of the aligned
clause.

collapse(number of loops)

 Nested loop iterations are collapsed into one loop with a larger iteration
space.

private(v1, v2, …), lastprivate (v1, v2, …)

 declares one or more list items to be private to an implicit task or to a
SIMD lane, lastprivate causes the corresponding original list item to be
updated after the end of the region..

66

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

SIMD-enabled functions

Write a function for one element and add pragma as follows

Call the scalar version:

Call vector version via SIMD loop:

67

#pragma omp declare simd

float foo(float a, float b, float c, float d)

{

 return a * b + c * d;

}

#pragma omp simd

for(i = 0; i < n; i++) {

 A[i] = foo(B[i], C[i], D[i], E[i]);

}

A[:] = foo(B[:], C[:], D[:], E[:]);

e = foo(a, b, c, d);

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Example of Outer Loop Vectorization
#pragma omp declare simd
int lednam(float c)
{ // Compute n >= 0 such that c^n > LIMIT
 float z = 1.0f; int iters = 0;
 while (z < LIMIT) {
 z = z * c; iters++;
 }
 return iters;
}

float in_vals[];
#pragma omp simd
for(int x = 0; x < Width; ++x) {
 count[x] = lednam(in_vals[x]);
}

68

x = 0 x = 1 x = 2 x = 3

float in_vals[];
#pragma omp parallel for simd
for(int x = 0; x < Width; ++x) {
 count[x] = lednam(in_vals[x]);
}

float in_vals[];
#pragma omp simd
for(int x = 0; x < Width; ++x) {
 count[x] = lednam(in_vals[x]);
}

z = z * c

z = z * c

iters = 2

z = z * c

z = z * c

….

iters = 23

z = z * c

z = z * c

……….……...

iters = 255

z = z * c

z = z * c

……..

iters = 37

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Parallelism vs. Memory

69

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

70

Class Point

 {

 float x,y,z;

 //some weights/colors..

 }

Class Triangle

//could be Figure, Vector,

Particle..

 {Point a,b,c;}

Triangle T[N];

void TraverseTriangles

{

 for (int i=0; i<N; i++)

 //do something with T[i]

}

x y z x y z x y z x y z x y z x y z … …

 i =0: T[0] i=1: T[1]

Memory Access

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

71

void TraverseTriangles

{

 #pragma omp simd simdlen(2)

 for (int i=0; i<N; i++)

 //do something with T[i]

}

x y z x y z x y z …

 Scalar: i =0: T[0] i=1: T[1]

Problem #1:
 Memory Access Pattern

Vector: i_vec =0: Process T[0] and T[1] at once

x y z x y z x y z x y z x y z x y z … …

x y z x y z x y z …

x … x …

REG

Problem #1:
 non-contiguous memory access (non-unit-stride)
- Two sequential (scalar) loads into vector register. Instead

of single packed load
- All memory operations (could easily be >50% of time)

are serialized, not parallelized. Bottleneck.

x x y y …

REG

x …

Solution: AoS -> SoA to introduce unit stride
(contiguous) access pattern
- Two values loaded in once
- No serialization, no bottleneck
- And could be more cache-friendly

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

72

x y z x y z x y z …

Problem #1:
 Memory Access Pattern. Locality.

i =0: Process T[0] and T[1] at once

x y z x y z x y z …

x … x …

REG

Problem #1:
 non-contiguous memory access
(non-unit-stride)
- Two sequential (scalar) loads into

vector register. Instead of single
packed load

- All memory operations are serialized,
not parallelized. Bottleneck.

- Distance between T[0].a.x and T[0].a.y

x x y y …

REG

x …

Solution: Array of Structures ->
Structure of Arrays (AoS -> SoA):
unit stride (linear, contiguous) Two
values loaded at once
- No serialization, no bottleneck
- Could be more cache-friendly

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

73

Problem #2:
 Locality and Bandwidth.

Assume we solved Problem #1
Problem #2:1 : What if D> L1 size, D > L2 size?
D >> L2 size (streaming..)
 Very “expensive” memory accesses
 Every next instruction leads to cache miss

Possible solutions
- Array Of Structure of Arrays
- Tiling
- Pre-fetching..
- Merge kernels to make them

compute-intensive, unrolling

x x y y …

REG

…

D (in bytes)

REG

CACHE

Problem #2:2 :
• Not enough computations to “amortize” bigger memory

latency :
• SIMD benefits will be smaller and limited by DRAM/L3..

z

y y

x x

 a b c

z z z

y y

x x x

 a b c

 T[0] T[1]

z z

y

x
Struct {

 float x[100];

 float y[100];

 float z[100];

} T;

y

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

74

Problem #3:
 Latency bound codes

Problem #3 : What if D varies unpredictably:
 Variable (random) stride.
 Every access could be cache miss
 Data divergence -> serialization on AVX(1)
 For newer ISA (AVX2): vgather (but mov*
will anyway be faster)

Possible solutions:
- Know your access patterns!
- Consider vectorizing along

different iteration space..
- Consider newer

architectures with better
data divergence support

x x …

REG

…

CACHE

Possible problem #3:1 :
• Substantially not enough computations to

“amortize” bigger memory latency

x … x

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

75

To confuse it slightly more..

And bring multi-core , NUMA on the table

Geoff Lowney, Intel Fellow:
 SIMD workshop keynote examples

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Confidential 76 7/17/20
15

DRAM AL
U

REG

Keep in vector register Scalar load Vector load

* =

A SIMD code generation strategy

Performance limited by memory bandwidth

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Confidential 77 7/17/20
15

DRAM
ALU REG

Keep in vector register Scalar load Vector load

* =

A SIMD code generation strategy

Performance limited by memory bandwidth

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Confidential 78 7/17/20
15

* =

Keep in vector register Scalar load Vector load

A hardware multi-threading, cache and SIMD
code generation strategy

Tile for locality Split tile for mulithreading
Share tile between threads

DRAM CACHE ALU
REG REG REG REG

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Confidential 79 7/17/20
15

* =

Keep in vector register Scalar load Vector load

A multi-core, hardware multi-threading,
cache and SIMD code generation strategy

DRAM

CACHE AL
U

REG REG REG REG CACHE AL
U

REG REG REG REG CACHE AL
U

REG REG REG REG
CACHE AL

U

REG REG REG REG

New, Separate tiles for multi-core

Tile for locality Share tile between threads
Split tile for mulithreading

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Confidential 80 7/17/20
15

High quality SIMD and threading code generation
requires optimizing at least for 4 hardware features

SIMD functional units Linear data access

Caches Tiled data access

Hardware multi-threading Shared tiles

Multi-core Disjoint tiles

To confuse it slightly more..

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Cache
Model

Let the hardware automatically
manage the integrated on-package
memory as an “L3” cache between KNL
CPU and external DDR

Flat
Model

Manually manage how your
application uses the integrated on-
package memory and external DDR for
peak performance

Hybrid
Model

Harness the benefits of both cache and
flat models by segmenting the
integrated on-package memory

Maximizes performance through higher
 memory bandwidth and flexibility1

Knights Landing Integrated On-Package
Memory

81

Near
Memory

KNL
CPU

HBW
On-

Package
Memory

. . .

. . .

HBW
On-

Package
Memory

HBW
On-

Package
Memory

HBW
On-

Package
Memory

HBW
On-

Package
Memory

HBW
On-

Package
Memory

CPU Package

DDR

DDR

DDR

. . .

Cache

PCB

Near
Memory

Far
 Memory

Side
View

Top
View

1 As compared with Intel® Xeon Phi™ x100 Coprocessor Family
Diagram is for conceptual purposes only and only illustrates a CPU and memory – it is not to scale, and is not representative of actual
component layout.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Cache Model Flat Model Hybrid Model

Description

Hardware automatically
manages the MCDRAM as a

“L3 cache” between CPU and
ext DDR memory

Manually manage how the
app uses the integrated on-

package memory and
external DDR for peak perf

Harness the benefits of both
Cache and Flat models by

segmenting the integrated on-
package memory

Usage Model

 App and/or data set is very
large and will not fit into
MCDRAM

 Unknown or unstructured
memory access behavior

 App or portion of an app or
data set that can be, or is
needed to be “locked” into
MCDRAM so it doesn’t get
flushed out

 Need to “lock” in a relatively
small portion of an app or
data set via the Flat model

 Remaining MCDRAM can
then be configured as Cache

DRAM
8 or 4 GB
MCDRAM

8 or 12GB
MCDRAM

Split Options2:

25/75%

 or

50/50%

8GB/ 16GB
MCDRAM

Up to 384
(Only 32 for
coprocessor)

GB

DRAM P
hy

si
ca

l A
d

d
re

ss

DRAM
16GB

MCDRAM

64B cache

lines direct-mapped

1. NUMA = non-uniform memory access
2. As projected based on early product definition

Maximum flexibility for maximum performance

Integrated On-Package Memory Usage Models
Model configurable at boot time and software exposed through NUMA1

82

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Back-up

83

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Configurations for Binomial Options SP

Platform

Unscaled
Core

Frequency
Cores/
Socket

Num
Sockets

L1
Data

Cache
L1 I

Cache
L2

Cache
L3

Cache Memory
Memory

Frequency
Memory
Access

H/W
Prefetchers

Enabled
HT

Enabled
Turbo

Enabled C States
O/S

Name
Operating

System
Compiler
Version

Intel® Xeon™
5472 Processor 3.0 GHZ 4 2 32K 32K 12 MB None 32 GB 800 MHZ UMA Y N N Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™
X5570 Processor 2.93 GHZ 4 2 32K 32K 256K 8 MB 48 GB 1333 MHZ NUMA Y Y Y Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™
X5680 Processor 3.33 GHZ 6 2 32K 32K 256K 12 MB 48 MB 1333 MHZ NUMA Y Y Y Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™ E5
2690 Processor 2.9 GHZ 8 2 32K 32K 256K 20 MB 64 GB 1600 MHZ NUMA Y Y Y Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Intel® Xeon™ E5
2697v2 Processor 2.7 GHZ 12 2 32K 32K 256K 30 MB 64 GB 1867 MHZ NUMA Y Y Y Disabled

Fedora
20

3.11.10-
301.fc20

icc version
14.0.1

Codename
Haswell 2.2 GHz 14 2 32K 32K 256K 35 MB 64 GB 2133 MHZ NUMA Y Y Y Disabled

Fedora
20

3.13.5-
202.fc20

icc version
14.0.1

Platform Hardware and Software Configuration

Optimization Notice
Intel’s compilers may or may not optimize to the same degree for non-Intel
microprocessors for optimizations that are not unique to Intel microprocessors. These
optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations.
Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations
in this product are intended for use with Intel microprocessors. Certain optimizations not
specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to
the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice. Notice revision #20110804

Performance measured in Intel Labs by Intel employees

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

TBB General Limits

Does not require compile-time analysis.

 Does not support fine-grained parallelism

“Help first” tasking

 Can simulate “work first” using explicit continuation passing.

Limited to direct use from C++.

 Consider doing Java, C#, and Managed C++ versions later.

Distributed memory is not supported.

 Target is desktop.

Requires more work than just sprinkling in pragmas a la OpenMP.

No support for mandatory parallelism.

Copyright © 2015 Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015v, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the
Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

86

