(lntel) Look Inside”

Intel® C++ & Fortran Compiler

Presenter: Georg Zitzlsberger

Date: 09-07-2015

Agenda

* Introduction

* How to Use

« Compiler Highlights
* Numerical Stability

 What's New (16.0)?

 Summary

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Why Use Intel® C++/Fortran Compiler?

Compatibility
= Multiple OS Support: Windows*, Linux*, OS X*

= |ntegration into development environments: Visual Studio* in Windows*,
Eclipse* in Linux*, Xcode* in OS X*

= Source and binary compatibility - can mix and match files as needed

= C99, C11 (partly), C++11& C++14 (partly):

= https://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler

= https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler

= https://software.intel.com/en-us/articles/cOx-features-supported-by-intel-c-
compiler

= https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-
compiler

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler

Why Use Intel® C++/Fortran Compiler?

= Fortran 2003, many features from Fortran 2008:

= https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-
fortran-language-standards

Parallelism

= Automatic vectorization (data level parallelization)

Language Extension (Intel Cilk® Plus™ for C/C++) for task parallelism

C++ Multithreading Library (Intel® TBB)

Multithreaded Performance Libraries (MKL, IPP)

Own runtime supporting OpenMP* 4.0 (https://www.openmprtl.org/)

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://www.openmprtl.org/
https://www.openmprtl.org/
https://www.openmprtl.org/

Why Use Intel® C++/Fortran Compiler?

Performance

= Code generation tuned for latest micro architecture

= New instructions enable new opportunities (SSE, AVX, AVX2)
= Support for multi-core, many-core

Optimization

= Optimizing compilers

= Highly Optimized Libraries

= MKL — Math functions (BLAS, FFT, LAPACK, etc.)

» |[PP - Compression, Vides Encoding, Image Processing, etc.)
Hardware Support

= Skylake support

= Knights Landing (KNL) support

» Compute on Intel Graphics

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

GDB Debugger now standard

@ GDB

Software

Intel provides enhanced GDB as standard debug solution with
Intel® Parallel Studio XE

* Increase C++ and now Fortran application reliability

Faster debug cycles for hybrid programming through full
simultaneous debug support across host and Intel® Xeon Phi
coprocessor targets — on Linux* and Windows* host

™

Intel® MPX and Intel® AVX-512 support for more robust and
faster applications

Fast bug fixing through Intel® Processor Trace support

Fast and efficient analysis and debugging of past program
execution

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

* Introduction

* How to Use

« Compiler Highlights
* Numerical Stability

 What's New (16.0)?

 Summary

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Key Files Supplied with Compilers

Linux*, OS X*

Intel Compiler

" icc, icpc, ifort:C/C++ compiler, Fortran compiler

» compilervars. (c)sh: Source scripts to setup the complete
compiler/debugger/libraries environment (C/C++ and Fortran)

Linker Driver
= xild:Invokes 1d

Archiver Driver

» xiar Invokes ar

Intel include files, libraries

Intel Enhanced GDB Debugger

*» gdb-ia Command Line Debugger for IA
» gdb-mic Command Line Debugger for Intel® MIC (Linux ONLY)

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

* Introduction

* How to Use

* Compiler Highlights
* Numerical Stability
 What's New (16.0)?

 Summary

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Fasier to Use Optimization Reports

Intel Compilers

Improved message clarity

= Reference to function names, data variables, control structure

Messages suggest actions for next steps

= For example, Try an option, pragma or

clause to change behavior

int size();

void foo(double *restrict a, double
*bX

inti;

for (i=0;i<size();i++){

a[i] += bl[il;

}

}

»

icpc —c -O3 -restrict —opt-report x.cpp

14.0 compiler:
x.cpp(6) (col. 15) remark: loop was not vectorized: unsupported loop
structure

15.0 compiler:
LOOP BEGIN at x.cpp(6,15)
remark #15523: loop was not vectorized: cannot compute loop iteration
count before executing the loop.
LOOP END

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Compiler Reports — Optimization Report

» Enables the optimization report and controls the level of details

» /Qopt-report[:n] (Windows), ~-gopt-report [=n] (Linux, OS X)

» When used without parameters, full optimization report is issued on stdout with details level 2
= Writes optimization report to file

* /Qopt-report-file:<filename> (Windows), ~-gopt-report-file=<filename>
(Linux, OS X)

= By default, without this option, *.optrpt files is generated for each source file.
= Subset of the optimization report for specific phases only

* /Qopt-report-phase[:1list] (Windows), -gopt-report-phase=[1list] (Linux,
OS X); phases can be:

Optimization Notice

cg: Code generation

ipo: Interprocedural optimization report

loop: Loop nest optimization report

offload: Optimizations for Intel® MIC Architecture offloaded code

openmp: OpenMP parallelized code report

pgo: Profile Guided Optimization report

tcollect: Trace collection report

vec: Vectorization report

all: Full optimization report, same as /Qopt-report, -qopt-report used without parameter

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

High-Level Optimization (HLO)

Compiler switches:
/02, /03, /O0x (Windows*),-02, -03 (Linux* Mac OS*)

Loop level optimizations
= loop unrolling, cache blocking, prefetching

More aggressive dependency analysis

» Determines whether or not it's safe to reorder or parallelize statements

Scalar replacement

» Goal is to reduce memory by replacing with register references

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel-Specific Pragmas (some)

Pragma
alloc_section
cilk grainsize
distribute point
inline

ivdep

loop_count
nofusion
novector

optimize

optimization_ level

optimization_ paramete
r

parallel/noparallel

simd
unroll/nounroll

unroll and jam/
nounroll and jam

unused

vector

Description

allocates variable in specified section

specifies the grain size for one cilk for loop

instructs the compiler to prefer loop distribution at the location indicated
instructs the compiler that the user prefers that the calls in question be inlined
instructs the compiler to ignore assumed vector dependencies

indicates the loop count is likely to be an integer

prevents a loop from fusing with adjacent loops

specifies that the loop should never be vectorized

enables or disables optimizations for specific functions; provides some degree of
compatibility with Microsoft's implementation of optimize pragma

enables control of optimization for a specific function

tells the compiler to generate code specialized for a particular processor, at the function
level, similar to the -m (/arch) option

facilitates auto-parallelization of an immediately following DO loop; using keyword [always]
forces the compiler to auto-parallelize; noparallel pragma prevents auto-parallelization

enforces vectorization of innermost loops
instructs the compiler the number of times to unroll/not to unroll a loop

instructs the compiler to partially unroll higher loops and jam the resulting loops back
together. Specifying the nounroll_and_jam pragma prevents unrolling and jamming of loops.

describes variables that are unused (warnings not generated)

indicates to the compiler that the loop should be vectorized according to the arguments:
always/aligned/unaligned/nontemporal/temporal

...and more (e.g. OpenMP* or offloading for Intel® MIC)

(o)

timization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel-Specific Directives (some)

Directive Description

ASSUME ALIGNED Specifies that an entity in memory is aligned.

DISTRIBUTE POINT Suggests a location at which a DO loop may be split.
INLINE/FORCEINLINE/ Tell the compiler to perform the specified inlining on routines within

NOINLINE statements or DO loops.

IVDEP Assists the compiler's dependence analysis of iterative DO loops.

LOOP COUNT Specifies the typical trip count for a DO loop; this assists the optimizer.

MESSAGE

NOFUSION Prevents a loop from fusing with adjacent loops.

OPTIMIZE and Enables or disables optimizations for the program unit.

NOOPTIMIZE

OPTIONS Affects data alignment and warnings about data alignment.

PACK Specifies the memory alignment of derived-type items.

PARALLEL and Facilitates or prevents auto-parallelization by assisting the compiler's

NOPARALLEL dependence analysis of the immediately following DO loop.

SIMD Requires and controls SIMD vectorization of loops.

UNROLL/NOUNROLL Tells the compiler's optimizer how many times to unroll a DO loop or disables
the unrolling of a DO loop.

UNROLL AND JAM/ Enables or disables loop unrolling and jamming.

NOUNROLL_AND JAM

VECTOR/NOVECTOR Overrides default heuristics for vectorization of DO loops.

...and more (e.g. OpenMP* or offloading for Intel® MIC)

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Interprocedural Optimizations

Extends optimizations across file boundaries

Without IPO With IPO

Compile & Optimize ——| filel.c Compile & Optimize
- l

Compile & Optimize ——p | file2.c
L —

Compile & Optimize —p | file3.c
L

Compile & Optimize ——p | filed.c
L —

/Qip, -ip Only between modules of one source file

/Qipo, -ipo | Modules of multiple files/whole application

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Interprocedural Optimizations (IPO)

Usage: Two-Step Process

Compiling
Linux* ice -c -ipo main.c funcl.c
func2.c
L Windows* icl -c /Qipo main.c funcl.c
Pass 1 . func2.c
| >
mock object
v
Pass 2 Linking
Linux* icec -ipo main.o funcl.o
func2.o
Windows* icl /Qipo main.o funcl.o

v func2.obj
executable

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Profile-Guided Optimizations (PGO)

Static analysis leaves many questions open for the i Oe

optimizer like: SanEle ¥
= Howoftenisx>y

= Whatis the size of count
= Which code is touched how often Instrumented

Executable
if (x>y) —0 i< . o
do_ this() for(i=0; i<count; ++I
else do_work();
do that();
Use execution-time feedback to guide (final) —SiepTwo
. . . un instrumente
optimization Do iorTacton s
Enhancements with PGO: | Dynamic
Information
= More accurate branch prediction pEumery; Ela
= Basic block movement to improve instruction cache behavior Step Three
. Feedback Compile
= Better decision of functions to inline (help IPO) with PGO

= Can optimize function ordering
» Switch-statement optimization

= Better vectorization decisions

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

PGO Usage: Three Step Process

Step 1

Compile + link to add instrumentation
icc -prof gen prog.c

Step 2

Execute instrumented program
prog.exe (on a typical dataset)

\ 4

Step 3

Compile + link using feedback
lcc -prof use prog.c

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Code Coverage Tool

Combines static and dynamic profiling information to generate a
view in HTML of how much code is exercised for particular
workload(s)

Available for C++ and Fortran, on all platforms

Capable of basic block level, function level, partial or component
code coverage analysis, excluding function/file, differential
coverage between different test runs (.dyn).

See: https://software.intel.com/en-us/node/522743

Us

(L

the Code Coverage Tool for Component Testing

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/node/522743
https://software.intel.com/en-us/node/522743
https://software.intel.com/en-us/node/522743
https://software.intel.com/en-us/node/522743
https://software.intel.com/en-us/node/522743

Loop Profiler

|dentify Time Consuming Loops/Functions

Compiler switch:
/Qprofile-functions, -profile-functions

» Insert instrumentation calls on function entry and exit points to collect the
cycles spent within the function.

Compiler switch:
/Qprofile-loops=<inner|outer|all>,
-profile-loops= <inner|outer|all>

» |nsert instrumentation calls for function entry and exit points as well as the

instrumentation before and after instrument able loops of the type listed as the
option’s argument.

Loop Profiler switches trigger generation of text (dump) and XML
(.xml) output files

= |nvocation of XML viewer on command line:
Java —-Jjar loopprofviewer.jar <xml datafile>

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Loop Profiler Text Dump (.dump file)

time (abs)
4378070322
647499316
1462208444
119744296
137853240
198253943
47165828
569547871
119928920
132122614
22904224
BET5927
15997356
2792164
1290621
495976
2592456700
47392247
5225406
4385684262
630948
4385610543
6711753
82503
53760
4378817661
26175
12528
30798

9294

7575

6237

4761

2358

9588

10218

B373

216

87

84

timization Notice

time (%)
99 .83
14 .76
33.34
2.73
3.13
4.52
1.88
1.59
2.73
3.81
2.52
2.15
B.36
B.06
B.83
B.681
5.91
1.88
2.12
108 .00
B.81
108 .00
B.15
B.00
2.008
99 .84
B.008
B.008
2.008
B.00
B.00
2.008
2.008
B.008
B.008
2.008
B.00
B.00
2.008
2.008

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

selfT ({abs)

1818826157

642829878
487754966
119626890
2956863374
66623288
47182278
32157819
24484703
12346758
6738036
6672487
GR29850
2620132
1175933
IBT220
261552
162869
113633
66840
56083
35086
32771
23661
22140
19622
13585
12466
11268
9232
7463
56113
4099
2234
1153

862

686

154

25

22

selTtT (%)
41 .29
14 .66
11.12
2.73
Z2.04
1.52
1.87
B.73
B.56
8.28
2.15
2.15
2.14
B.06
B.83
B.681
B.61
2.08
2.08
B.08
B.08
2.08
B.08
B.08
2.08
2.08
B.08
B.08
2.08
B.08
B.08
2.08
2.08
B.08
B.08
2.08
B.08
B.08
2.08
2.08

call_ count
1
16768796
18546669
513

512

512

1825
344059
1536

513

1537

1

139288
1536
laz24

513

512

1025

512

HHEHEHEHEREMNMENEERRNMSB/H/HBW B39 99

exit count loop ticks(%s) Tile:line

1
16768796
18546669

513
312
512
1825
344059
1536
513
1537

1
139288
1536
1024
513
512
1925
312

HFHEHHEHHEHEHENHENHFHENERHEFWDRRRERRH

41.29
2.1
7.7
2.73
2.04
1.46
g.o8
a.66
@.12
.00
2.15
o.00
@.12
.06
@.a3
2.1
.00
o.o8
o.00
.00
g.o8
o.o0
.06
.00
o.o8
o.00
.00
g.o8
o.o0
.06
.00
o.o8
o.00
.00
g.o8
o.o0
.06
.00
o.o8
o.00

deflate.c:623
trees . c:961
deflate.c:360
util.c:63
bits.c:185
deflate.c:478
util.c:153
trees.c:454
trees . c:611
Zzip.c:106
trees.c:571
gzip.c:1511
bits.c:151
trees.c:485
trees.c:699
trees . c:408
trees.c:857
util.c:121
trees.c:791
gzip.c:424
deflate.c:289
gzip.c:704
gzip.c:853
trees.c:335
bits.c:164
Zip.c:35
gzip.c:1605
gzip.c:1583
bits.c:122
gzip.c:915
util.c:170
gzip.c:1421
util.c:283
util.c:183
gzip.c:1062
gzip.cCc:989
gzip.c:939
gZzip.c:1703
bits.c:99
gzip.c:1398

Loop Profiler Data Viewer GUI

oop Profile Viewer: «\3\loop3_sample\loop_prof_ 1258065047 .5cml

(copy from sl. 46)

File \iew Filter Help
~Function Profile
Function Function file:line Time %% Time %+ Self time %% Self time Call Count % Time in Loops
_main spec.c: 286 33,737,882,427 99.80 52,724,529 0.16 1 0.09 :I
_comnoressSiream hzin 2. - 440 22,141,802,790 ©65.50 37,645,635 0.11 3 0,00 |
22,072,329,981 565,29 111,073,801 0,33
21,291,282, 10 52,98 382,054 0.00 S O allo O enanpile
Func'“on Proflle V|eW 20,773,545, 51.45 805,260 0,00 A a0 3 0 A
_ 11,543,3 34.15 1,509,243 0.00
B3l 11,519 37 34.08 2,278,598 0.01 O OQE
B N 11, 1,637 33.74 59,950,540 0.21
_mainSort blocksort.c:805 1 041,172 33.53 1,090,262,703 3.23 25 3.20
_BZ2_decompress decompress.c: 147 1,252,448 33.05 10,916,277,582 32.29 1,177 13.81
_mainSimpleSart blac O eade 0 electio 22.99 3,978,755,360 Filter: Function total time > 2.0% .62
_sendMTFValues com| 16,62 3,149,709,581 Filter: Function self time &7
_generateMTFValues com O contro eria 12,62 3,565,312,664 T e ot mea .96
_mainGt bloc deEpeENaeE O O anad 8.55 2,388,612,638 View: Function source for selected function 1.75
_bsW com| 00D A 65,52 1,080,193,267 1.50
_BZ2_bzWriteClose64@28 bzlit] 3.88 49,713 0,00 3 0.00
_copy_input_until_stop bzlib.c: 347 | 668,863,836' 667,041,514 1.97] 3,172 0,36
_unRLE_obuf to_putput_FAST |bzlib.c:594 | 33?,105,368' 336,452,554 1.00 3,169 D.DD;I
~Loop Profile
Function Function file:line Loop file:line Time % Time Self time %% Sel .|Loop entries % | Min iterations Avg iterations Max iterations
BZ2? decompress decompress. c: 147 decompress.c:516 1,542 525,615 4,60 1,542 436,842 4.60 16,620,325 1 1 2
_generateMTFValues compress.c: 165 compress. c: 243 2,897,058,042] 8.60| 2,200,189,953 5.50 5,573,353 1 59 254
_mainSimpleSort blocksort.c: 540 blocksort.c: 564 983,191,873 2.90 389,571,523 1.20 1,919,330 1 1 15
1,072,097,649 3.20 353,132,708 1.10 1,781,679 1 1 156
1,109,670,579 3.30 388,082,294 1.10 1,622,744 1 1 15
_mainSort 10,359,855,054 30,60 120,685,201 0.40 5,400 256 256 256
_BZ2_bzWrif 20,772,753,426 51,40 660,714 0,00 3,147 1 1 78
_uncompres; 11,540,287,539 34.10 1,454,966 0.00 3 1,049 1,049 1,049
_BZ2_bzWrif 1,307,063,997 3.90 34,859 0.00 3 [} 23 50

(o)

timization Notice

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Pointer Checker (C/C++)

Out-of-bounds memory checking at runtime

— Checks before any memory access through a pointer that the pointer address is
inside the object pointed to.

— Checks for accesses through pointers that have been freed.

Enable pointer checker via compiler switches.
/Qcheck-pointers: [none|write|rw]
-check-pointers=[none|write|rw]

Enable checking for dangling pointer references:
/Qcheck-pointers-dangling: [none|heap|stack|all]
-check-pointers-dangling=[none|heap|stack|all]

Enable checking of bounds for arrays without dimensions:
/Qcheck-pointers-undimensioned|[-]

- [no] check-pointers-undimensioned
Intrinsics allow user to get lower/upper bounds associated with pointer
and create / destroy bounds for a pointer.

— void * _ chkp lower bound(void *¥*)

— void * _ chkp upper bound(void *¥)

— void * _ chkp kill bounds(void *p)

— void * _ chkp make bounds(void *p, size t size)

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Pointer Checker Example

$ icc main.c —-check-pointers=write

void main() $./a.out

{ CHKP: Bounds check error
char a[5]; Traceback:
foo(a); £00 [0x4010E0]

} main [0x40104D]

void foo(char *a) __tmainCRTStartup [0x4014A6]

{ BaseThreadInitThunk [0x760E3677]
int“ RtlInitializeExceptionChain
for (i=0; i<100; i++) { [0x77869F02]

ali] = 0; RtlInitializeExceptionChain

} [0x77869EDS]

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

* Introduction

* How to Use

« Compiler Highlights
* Numerical Stability
 What's New (16.0)?

 Summary

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Numerical Stability - The Problem

Numerical (FP) results change on run-to-run:

C:\Users\me>test.exe
4.012345678901111

C:\Users\me>test.exe

4.012345678902222

Numerical results change between different systems:
Intel® Xeon® Processor E5540 Intel® Xeon® Processor E3-1275

C:\Users\me>test.exe C:\Users\me>test.exe
4.012345678901111 4.012345678902222

C:\Users\me>test.exe C:\Users\me>test.exe
4.012345678901111 4.012345678902222

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Why Results Vary |

Basic problem:
= FP numbers have finite resolution and

= Rounding is done for each (intermediate) result

Caused by algorithm:
Conditional numerical computation for different systems and/or input data
can have unexpected results

Non-deterministic task/thread scheduler:
Asynchronous task/thread scheduling has best performance but reruns use
different threads

Alignment (heap & stack):

If alignment is not guaranteed and changes between reruns the data sets
could be computed differently (e.g. vector loop prologue & epilogue of
unaligned data)

= User controls those (direct or indirect)

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Why Results Vary |l

Order of FP operations has impact on rounded result, e.g.
(at+b) +c # a+ (b+c)

2763 + 1 + -1 = 2793 (mathematical result)
(273 +1) + -1 =0 (correct IEEE result)
2763 + (1 + -1) = 2793 (correct|EEE result)

Constantfolding:X + 0 ® XorX * 1 © X

Multiply by reciprocal:A/B = A * (1/B)

Approximated transcendental functions (e.g. sqrt (..), sin(..), ...
Flush-to-zero (for SIMD instructions)

Contractions (e.g. FMA)

Different code paths (e.g. SIMD & non-SIMD or Intel AVX vs. SSE)

= Subject of Optimizations by Compiler & Libraries

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Compiler Optimizations

Why compiler optimizations:
» Provide best performance
= Make use of processor features like SIMD (vectorization)

* |In most cases performance is more important than FP precision and reproducibility

{TspesgT [P precision & reprodudbiity >

FP model of compiler limits optimizations and provides control about FP
precision and reproducibility:

» Use faster FP operations (not legacy x87 coprocessor)

Default is “fast”

Controlled via:
Linux*, OS X*: —fp-model
Windows*: /fp:

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

FP Model |

FP model does more:

» Valuesafety ((x+y)+z # x+(y+2z)

Floating-point expression evaluation

Precise floating-point exceptions

Floating-point contractions

Floating-point unit (FPU) environment access

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

FP Model |l

FP model settings:

= precise: allows value-safe optimizations only

» source/double/extended: intermediate precision for FP expression eval.
= except: enables strict floating point exception semantics

= strict: enables access to the FPU environment disables floating point
contractions such as fused multiply-add (fma) instructions implies
“‘precise” and “except”

= fast[=1] (default):
Allows value-unsafe optimizations compiler chooses precision for
expression evaluation
Floating-point exception semantics not enforced
Access to the FPU environment not allowed
Floating-point contractions are allowed

» fast=2:some additional approximations allowed

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

FP Model - Comparison

: PU .

Value Expression : Precise FP FP

&y Safet Evaluation EVITe: Exceptions tract
y Access P contrac
precise Varies
source Source
Safe No No Yes

double Double
extended Extended
strict Safe Varies Yes Yes No
fast=11

Unsafe Unknown No No Yes
(default)

Ver

fast=2 y Unknown No No Yes

Unsafe
except *[x* * * Yes *
except- * * * No *
* These modes are unaffected. -fp-model except[-] only affects the precise FP

exceptions mode.

o Itis illegal to specify —fp-model except in an unsafe value safety mode.

Optimization Notice

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

FP Model - Example

: .] #include <iostream>
Using —fp-model [precise|strict]: #define N 100

 Disables reassociation

int main() {
 Enforces standard conformance float a[N], b[N];
(left-to-right) float ¢ = -1., tiny = 1.e-20F;
* May carry a significant For (int 1=0; i<N: it++) afi]=1.0:

performance penalty
for (int i=0; i<N; i++) {
a[i] = a[i] + ¢ + tiny;
b[i] = 1/a[i];

}
std::cout << "a = " << a[0]
<< " b =" << b[0]
Disabling of reassociation also impacts vec << "\n";

}

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Other FP Options |

 Linux*, OS X*: —=[no-]£ftz, Windows*: /Qftz[-]
Flush denormal results to zero

* Linux*, OS X*: = [no-]prec-div, Windows*: /Qprec-div[-]
Improves precision of floating point divides

* Linux*, OS X*: - [no-]prec-sqrt, Windows*:
/Qprec-sqrt[-]
Improves precision of square root calculations

* Linux*, OS X*: -fimf-precision=name, Windows*:
/Qimf-precision:name
high, medium, low: Controls accuracy of math library functions

* Linux*, OS X*: -fimf-arch-consistency=true, Windows*:
/Qimf-arch-consistency: true
Math library functions produce consistent results on different processor
types of the same architecture

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Other FP Options

* Linux*, OS X*: -fpe0, Windows*: /fpe: 0
Unmask floating point exceptions (Fortran only) and disable generation of
denormalized numbers

* Linux*, OS X*: -fp-trap=common, Windows*: /Qfp-trap: common
Unmask common floating point exceptions (C/C++ only)

* Linux*, OS X*: -[no-] fast-transcendentals, Windows*: /Qfast-
transcendentals|[-]
Enable/disable fast math functions

* Fortran only:
Linux*, OS X*: -assume [no]protect parens, Windows*:
/assume: [no]protect parens
Default is noprotect parens

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Recommendation

« The default FP model is fast but has less precision/reproducibility
(vectorization)

* The strict FP model has best precision/reproducibility but is slow
(no vectorization; x87 legacy)

* For best trade-off between precision, reproducibility & performance use:
Linux*, OS X*: —fp-model precise -fp-model source
Windows*: /fp:precise /fp:source
Approx. 12-15% slower performance for SPECCPU2006fp

« Don't mix math libraries from different compiler versions!

« Using different processor types (of same architecture), specify:
Linux*, OS X*: -fimf-arch-consistency=true
Windows*: /Qimf-arch-consistency: true

More information:

http://software.intel.com/en-us/articles/consistency-of-floating-point-
results-using-the-intel-compiler

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

Agenda

* Introduction

* How to Use

« Compiler Highlights
* Numerical Stability
 What's New (16.0)?

 Summary

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Intel® C/C++ & Fortran Compilers 16.0
What's New?

* BLOCK LOOP directive,block loop pragma
« Annotated Source Listing:

1 int* foo(int* a, int* b, int upperbound) {
2
3 int* ¢ = new int[upperbound];
4 #pragma omp parallel for
OpenMP DEFINED LOOP WAS PARALLELIZED
5 for (int 1 = 0; i < upperbound; ++i) {
LOOP BEGIN at Test/library.cpp(5,2)
<Peeled>
LOOP END

LOOP BEGIN at Test/library.cpp(5,2)
remark #25460: No loop optimizations reported
LOOP END

[/Q| -g]opt-report-annotate=[text|html],
[/Q]| -q]l opt-report-annotate-position=[caller|callee|both]

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

New for Fortran

e Submodules from Fortran 2008
e IMPURE ELEMENTAL from Fortran 2008
* Further C Interoperability from Fortran 2015 (TS29113)

 Fortran 2015 TYPE (*), DIMENSION (. .), RANK intrinsic, attributes for args
with BIND

« -initenhancements
« -—-fpp-name option
Status of Fortran support:

https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards

New for C/C++

Compile time improvements:

* Intrinsic prototypes are excluded
* Restore behavior with -D__INTEL COMPILER USE_ INTRINSIC PROTOTYPES

* Operators are now overloaded to allow SIMD intrinsic types
* Honoring parenthesis with -f [no-]protect-parens

* Improved C++14 (generic lambdas, member initializers, aggregates, ...)
* Improved C11(_Static_assert, Generic, Noreturn,..)

e Feature macros

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Agenda

* Introduction

* How to Use

« Compiler Highlights
* Numerical Stability
 What's New (16.0)?

 Summary

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

Summary

Intel® C++ and Intel® Fortran Compilers of Intel® Parallel Studio
provide powerful features, especially

= High level optimizations
= Auto-vectorization/-parallelization to parallelize serial code
= Sophisticated programming methods for multithreading

= Runs on GNU* environments or integrates into Eclipse (Linux*)

More information on Intel’s software offerings and services at
http://software.intel.com

Optimization Notice Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

http://software.intel.com/

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’'s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding

the specific instruction sets covered by this notice.
Notice revision #20110804

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.

