
Intel® C++ & Fortran Compiler

Presenter: Georg Zitzlsberger

Date: 09-07-2015

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction

• How to Use

• Compiler Highlights

• Numerical Stability

• What‘s New (16.0)?

• Summary

2

Agenda

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why Use Intel® C++/Fortran Compiler?

Compatibility

 Multiple OS Support: Windows*, Linux*, OS X*

 Integration into development environments: Visual Studio* in Windows*,
Eclipse* in Linux*, Xcode* in OS X*

 Source and binary compatibility - can mix and match files as needed

 C99, C11 (partly), C++11& C++14 (partly):

 https://software.intel.com/en-us/articles/c99-support-in-intel-c-compiler

 https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler

 https://software.intel.com/en-us/articles/c0x-features-supported-by-intel-c-
compiler

 https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-
compiler

3

https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c11-support-in-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler
https://software.intel.com/en-us/articles/c14-features-supported-by-intel-c-compiler

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why Use Intel® C++/Fortran Compiler?

 Fortran 2003, many features from Fortran 2008:

 https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-
fortran-language-standards

Parallelism

 Automatic vectorization (data level parallelization)

 Language Extension (Intel Cilk® Plus™ for C/C++) for task parallelism

 C++ Multithreading Library (Intel® TBB)

 Multithreaded Performance Libraries (MKL, IPP)

 Own runtime supporting OpenMP* 4.0 (https://www.openmprtl.org/)

4

https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://www.openmprtl.org/
https://www.openmprtl.org/
https://www.openmprtl.org/

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why Use Intel® C++/Fortran Compiler?

5

Performance

 Code generation tuned for latest micro architecture

 New instructions enable new opportunities (SSE, AVX, AVX2)

 Support for multi-core, many-core

Optimization

 Optimizing compilers

 Highly Optimized Libraries

 MKL – Math functions (BLAS, FFT, LAPACK, etc.)

 IPP – Compression, Vides Encoding, Image Processing, etc.)

Hardware Support

 Skylake support

 Knights Landing (KNL) support

 Compute on Intel Graphics

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

6

GDB Debugger now standard

Intel provides enhanced GDB as standard debug solution with
Intel® Parallel Studio XE

 Increase C++ and now Fortran application reliability

Faster debug cycles for hybrid programming through full
simultaneous debug support across host and Intel® Xeon Phi™
coprocessor targets – on Linux* and Windows* host

Intel® MPX and Intel® AVX-512 support for more robust and
faster applications

Fast bug fixing through Intel® Processor Trace support

Fast and efficient analysis and debugging of past program
execution

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction

• How to Use

• Compiler Highlights

• Numerical Stability

• What‘s New (16.0)?

• Summary

7

Agenda

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Key Files Supplied with Compilers

Linux*, OS X*

Intel Compiler
 icc, icpc, ifort: C/C++ compiler, Fortran compiler

 compilervars.(c)sh: Source scripts to setup the complete

compiler/debugger/libraries environment (C/C++ and Fortran)

Linker Driver
 xild: Invokes ld

Archiver Driver
 xiar Invokes ar

Intel include files, libraries

Intel Enhanced GDB Debugger
 gdb-ia Command Line Debugger for IA

 gdb-mic Command Line Debugger for Intel® MIC (Linux ONLY)

 8

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction

• How to Use

• Compiler Highlights

• Numerical Stability

• What‘s New (16.0)?

• Summary

9

Agenda

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

10

Easier to Use Optimization Reports
Intel Compilers

Improved message clarity

 Reference to function names, data variables, control structure

Messages suggest actions for next steps

 For example, Try an option, pragma or
clause to change behavior

 int size();
 void foo(double *restrict a, double
*b){
 int i;
 for (i=0;i<size();i++){
 a[i] += b[i];
 }
}

icpc –c -O3 –restrict –opt-report x.cpp

14.0 compiler:
x.cpp(6) (col. 15) remark: loop was not vectorized: unsupported loop
structure

15.0 compiler:
LOOP BEGIN at x.cpp(6,15)
 remark #15523: loop was not vectorized: cannot compute loop iteration
count before executing the loop.
LOOP END

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Compiler Reports – Optimization Report

11

 Enables the optimization report and controls the level of details

 /Qopt-report[:n] (Windows), -qopt-report[=n] (Linux, OS X)

 When used without parameters, full optimization report is issued on stdout with details level 2

 Writes optimization report to file

 /Qopt-report-file:<filename> (Windows), -qopt-report-file=<filename>

(Linux, OS X)

 By default, without this option, *.optrpt files is generated for each source file.

 Subset of the optimization report for specific phases only

 /Qopt-report-phase[:list] (Windows), -qopt-report-phase=[list] (Linux,

OS X); phases can be:

– cg: Code generation

– ipo: Interprocedural optimization report

– loop: Loop nest optimization report

– offload: Optimizations for Intel® MIC Architecture offloaded code

– openmp: OpenMP parallelized code report

– pgo: Profile Guided Optimization report

– tcollect: Trace collection report

– vec: Vectorization report

– all: Full optimization report, same as /Qopt-report, -qopt-report used without parameter

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

High-Level Optimization (HLO)

Compiler switches:
/O2, /O3, /Ox (Windows*), -O2, -O3 (Linux*, Mac OS*)

Loop level optimizations

 loop unrolling, cache blocking, prefetching

More aggressive dependency analysis

 Determines whether or not it‘s safe to reorder or parallelize statements

Scalar replacement

 Goal is to reduce memory by replacing with register references

12

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel-Specific Pragmas (some)

13

Pragma Description

alloc_section allocates variable in specified section

cilk grainsize specifies the grain size for one cilk_for loop

distribute_point instructs the compiler to prefer loop distribution at the location indicated

inline instructs the compiler that the user prefers that the calls in question be inlined

ivdep instructs the compiler to ignore assumed vector dependencies

loop_count indicates the loop count is likely to be an integer

nofusion prevents a loop from fusing with adjacent loops

novector specifies that the loop should never be vectorized

optimize enables or disables optimizations for specific functions; provides some degree of
compatibility with Microsoft's implementation of optimize pragma

optimization_level enables control of optimization for a specific function

optimization_paramete

r

tells the compiler to generate code specialized for a particular processor, at the function
level, similar to the -m (/arch) option

parallel/noparallel facilitates auto-parallelization of an immediately following DO loop; using keyword [always]
forces the compiler to auto-parallelize; noparallel pragma prevents auto-parallelization

simd enforces vectorization of innermost loops

unroll/nounroll instructs the compiler the number of times to unroll/not to unroll a loop

unroll_and_jam/
nounroll_and_jam

instructs the compiler to partially unroll higher loops and jam the resulting loops back
together. Specifying the nounroll_and_jam pragma prevents unrolling and jamming of loops.

unused describes variables that are unused (warnings not generated)

vector indicates to the compiler that the loop should be vectorized according to the arguments:
always/aligned/unaligned/nontemporal/temporal

…and more (e.g. OpenMP* or offloading for Intel® MIC)

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel-Specific Directives (some)

14

Directive Description

ASSUME_ALIGNED Specifies that an entity in memory is aligned.

DISTRIBUTE POINT Suggests a location at which a DO loop may be split.

INLINE/FORCEINLINE/
NOINLINE

Tell the compiler to perform the specified inlining on routines within
statements or DO loops.

IVDEP Assists the compiler's dependence analysis of iterative DO loops.

LOOP COUNT Specifies the typical trip count for a DO loop; this assists the optimizer.

MESSAGE

NOFUSION Prevents a loop from fusing with adjacent loops.

OPTIMIZE and

NOOPTIMIZE

Enables or disables optimizations for the program unit.

OPTIONS Affects data alignment and warnings about data alignment.

PACK Specifies the memory alignment of derived-type items.

PARALLEL and

NOPARALLEL

Facilitates or prevents auto-parallelization by assisting the compiler's
dependence analysis of the immediately following DO loop.

SIMD Requires and controls SIMD vectorization of loops.

UNROLL/NOUNROLL Tells the compiler's optimizer how many times to unroll a DO loop or disables
the unrolling of a DO loop.

UNROLL_AND_JAM/
NOUNROLL_AND_JAM

Enables or disables loop unrolling and jamming.

VECTOR/NOVECTOR Overrides default heuristics for vectorization of DO loops.

…and more (e.g. OpenMP* or offloading for Intel® MIC)

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice
15

Interprocedural Optimizations
Extends optimizations across file boundaries

Compile & Optimize

Compile & Optimize

Compile & Optimize

Compile & Optimize

file1.c

file2.c

file3.c

file4.c

Without IPO

Compile & Optimize

file1.c

file4.c file2.c

file3.c

With IPO

/Qip, -ip Only between modules of one source file

/Qipo, -ipo Modules of multiple files/whole application

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

16

Interprocedural Optimizations (IPO)
Usage: Two-Step Process

Linking

Linux* icc -ipo main.o func1.o

func2.o

Windows* icl /Qipo main.o func1.o

func2.obj

Pass 1

Pass 2

mock object

executable

Compiling

Linux* icc -c -ipo main.c func1.c

func2.c

Windows* icl -c /Qipo main.c func1.c

func2.c

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Profile-Guided Optimizations (PGO)
Static analysis leaves many questions open for the

optimizer like:
 How often is x > y

 What is the size of count

 Which code is touched how often

Use execution-time feedback to guide (final)

optimization

Enhancements with PGO:

 More accurate branch prediction

 Basic block movement to improve instruction cache behavior

 Better decision of functions to inline (help IPO)

 Can optimize function ordering

 Switch-statement optimization

 Better vectorization decisions

17

if (x > y)
 do_this();
 else
 do that();

for(i=0; i<count; ++I

do_work();

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

PGO Usage: Three Step Process

18

Compile + link to add instrumentation
icc -prof_gen prog.c

Execute instrumented program
prog.exe (on a typical dataset)

Compile + link using feedback
icc -prof_use prog.c

Dynamic profile:
12345678.dyn

Instrumented
executable:
prog.exe

Merged .dyn files:
pgopti.dpi

Step 1

Step 2

Step 3

Optimized executable:
prog.exe

Dynamic profile:
12345678.dyn

Dynamic profile:
12345678.dyn

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Code Coverage Tool

Combines static and dynamic profiling information to generate a
view in HTML of how much code is exercised for particular
workload(s)

Available for C++ and Fortran, on all platforms

Capable of basic block level, function level, partial or component
code coverage analysis, excluding function/file, differential
coverage between different test runs (.dyn).

See: https://software.intel.com/en-us/node/522743

Use the Code Coverage Tool for Component Testing

19

https://software.intel.com/en-us/node/522743
https://software.intel.com/en-us/node/522743
https://software.intel.com/en-us/node/522743
https://software.intel.com/en-us/node/522743
https://software.intel.com/en-us/node/522743

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Loop Profiler
Identify Time Consuming Loops/Functions

Compiler switch:
/Qprofile-functions, -profile-functions

 Insert instrumentation calls on function entry and exit points to collect the
cycles spent within the function.

Compiler switch:
/Qprofile-loops=<inner|outer|all>,

-profile-loops= <inner|outer|all>

 Insert instrumentation calls for function entry and exit points as well as the
instrumentation before and after instrument able loops of the type listed as the
option’s argument.

Loop Profiler switches trigger generation of text (.dump) and XML
(.xml) output files

 Invocation of XML viewer on command line:
java -jar loopprofviewer.jar <xml datafile>

20

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Loop Profiler Text Dump (.dump file)

21

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Loop Profiler Data Viewer GUI (copy from sl. 46)

22

Function Profile View

Loop Profile View

Column headers allow selection

to control sort criteria

independently for function and

loop table

Menu to allow user to enable

filtering or displaying the

source code

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Pointer Checker (C/C++)

23

• Out-of-bounds memory checking at runtime
– Checks before any memory access through a pointer that the pointer address is

inside the object pointed to.
– Checks for accesses through pointers that have been freed.

• Enable pointer checker via compiler switches.

/Qcheck-pointers:[none|write|rw]
-check-pointers=[none|write|rw]

• Enable checking for dangling pointer references:
/Qcheck-pointers-dangling:[none|heap|stack|all]
-check-pointers-dangling=[none|heap|stack|all]

• Enable checking of bounds for arrays without dimensions:
/Qcheck-pointers-undimensioned[-]

-[no]check-pointers-undimensioned

• Intrinsics allow user to get lower/upper bounds associated with pointer
and create / destroy bounds for a pointer.
– void * __chkp_lower_bound(void **)

– void * __chkp_upper_bound(void **)

– void * __chkp_kill_bounds(void *p)

– void * __chkp_make_bounds(void *p, size_t size)

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Pointer Checker Example

void main()

{

 char a[5];

 foo(a);

}

void foo(char *a)

{

 int i;

 for (i=0; i<100; i++) {

 a[i] = 0;

 }

}

$ icc main.c –check-pointers=write

$./a.out

CHKP: Bounds check error

Traceback:

foo [0x4010E0]

main [0x40104D]

__tmainCRTStartup [0x4014A6]

BaseThreadInitThunk [0x760E3677]

RtlInitializeExceptionChain

[0x77869F02]

RtlInitializeExceptionChain

[0x77869ED5]

24

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction

• How to Use

• Compiler Highlights

• Numerical Stability

• What‘s New (16.0)?

• Summary

25

Agenda

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Numerical (FP) results change on run-to-run:

Numerical results change between different systems:

Numerical Stability - The Problem

26

C:\Users\me>test.exe

4.012345678901111

C:\Users\me>test.exe

4.012345678902222

C:\Users\me>test.exe

4.012345678901111

C:\Users\me>test.exe

4.012345678901111

C:\Users\me>test.exe

4.012345678902222

C:\Users\me>test.exe

4.012345678902222

Intel® Xeon® Processor E5540 Intel® Xeon® Processor E3-1275

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Basic problem:

 FP numbers have finite resolution and

 Rounding is done for each (intermediate) result

Caused by algorithm:
Conditional numerical computation for different systems and/or input data
can have unexpected results

Non-deterministic task/thread scheduler:
Asynchronous task/thread scheduling has best performance but reruns use
different threads

Alignment (heap & stack):
If alignment is not guaranteed and changes between reruns the data sets
could be computed differently (e.g. vector loop prologue & epilogue of
unaligned data)

 User controls those (direct or indirect)

Why Results Vary I

27

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Order of FP operations has impact on rounded result, e.g.
(a+b)+c ≠ a+(b+c)

2-63 + 1 + -1 = 2-63 (mathematical result)

(2-63 + 1) + -1 ≈ 0 (correct IEEE result)

2-63 + (1 + -1) ≈ 2-63 (correct IEEE result)

Constant folding: X + 0  X or X * 1  X

Multiply by reciprocal: A/B  A * (1/B)

Approximated transcendental functions (e.g. sqrt(…), sin(…), …)

Flush-to-zero (for SIMD instructions)

Contractions (e.g. FMA)

Different code paths (e.g. SIMD & non-SIMD or Intel AVX vs. SSE)

…

 Subject of Optimizations by Compiler & Libraries

Why Results Vary II

28

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Why compiler optimizations:

 Provide best performance

 Make use of processor features like SIMD (vectorization)

 In most cases performance is more important than FP precision and reproducibility

 Use faster FP operations (not legacy x87 coprocessor)

FP model of compiler limits optimizations and provides control about FP
precision and reproducibility:

Default is “fast”

Controlled via:
Linux*, OS X*: –fp-model
Windows*: /fp:

Compiler Optimizations

29

fast=2 strict … fast

speed FP precision & reproducibility

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

FP model does more:

 Value safety ((x + y) + z ≠ x + (y + z))

 Floating-point expression evaluation

 Precise floating-point exceptions

 Floating-point contractions

 Floating-point unit (FPU) environment access

FP Model I

30

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

FP model settings:

 precise: allows value-safe optimizations only

 source/double/extended: intermediate precision for FP expression eval.

 except: enables strict floating point exception semantics

 strict: enables access to the FPU environment disables floating point
contractions such as fused multiply-add (fma) instructions implies
“precise” and “except”

 fast[=1] (default):
Allows value-unsafe optimizations compiler chooses precision for
expression evaluation
Floating-point exception semantics not enforced
Access to the FPU environment not allowed
Floating-point contractions are allowed

 fast=2: some additional approximations allowed

FP Model II

31

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

FP Model - Comparison

32

Key
Value
Safety

Expression
Evaluation

FPU
Environ.
Access

Precise FP
Exceptions

FP

contract

precise
source
double
extended

Safe

Varies
Source
Double

Extended

No No Yes

strict Safe Varies Yes Yes No

fast=1
(default)

Unsafe Unknown No No Yes

fast=2
Very

Unsafe
Unknown No No Yes

except
except-

*/**
*

*
*

*
*

Yes
No

*
*

* These modes are unaffected. –fp-model except[-] only affects the precise FP

 exceptions mode.
** It is illegal to specify –fp-model except in an unsafe value safety mode.

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Using –fp-model [precise|strict]:

• Disables reassociation

• Enforces standard conformance
(left-to-right)

• May carry a significant
performance penalty

Disabling of reassociation also impacts vectorization (e.g. partial sums)!

FP Model - Example

33

#include <iostream>

#define N 100

int main() {

 float a[N], b[N];

 float c = -1., tiny = 1.e-20F;

 for (int i=0; i<N; i++) a[i]=1.0;

 for (int i=0; i<N; i++) {

 a[i] = a[i] + c + tiny;

 b[i] = 1/a[i];

 }

 std::cout << "a = " << a[0]

 << " b = " << b[0]

 << "\n";

}

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Linux*, OS X*: –[no-]ftz, Windows*: /Qftz[-]
Flush denormal results to zero

• Linux*, OS X*: -[no-]prec-div, Windows*: /Qprec-div[-]
Improves precision of floating point divides

• Linux*, OS X*: -[no-]prec-sqrt, Windows*:
/Qprec-sqrt[-]
Improves precision of square root calculations

• Linux*, OS X*: -fimf-precision=name, Windows*:
/Qimf-precision:name
high, medium, low: Controls accuracy of math library functions

• Linux*, OS X*: -fimf-arch-consistency=true, Windows*:
/Qimf-arch-consistency:true

Math library functions produce consistent results on different processor
types of the same architecture

Other FP Options I

34

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Linux*, OS X*: -fpe0, Windows*: /fpe:0
Unmask floating point exceptions (Fortran only) and disable generation of
denormalized numbers

• Linux*, OS X*: -fp-trap=common, Windows*: /Qfp-trap:common
Unmask common floating point exceptions (C/C++ only)

• Linux*, OS X*: -[no-]fast-transcendentals, Windows*: /Qfast-
transcendentals[-]
Enable/disable fast math functions

• Fortran only:
Linux*, OS X*: -assume [no]protect_parens, Windows*:
/assume:[no]protect_parens

Default is noprotect_parens

• …

Other FP Options II

35

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• The default FP model is fast but has less precision/reproducibility
(vectorization)

• The strict FP model has best precision/reproducibility but is slow
(no vectorization; x87 legacy)

• For best trade-off between precision, reproducibility & performance use:
Linux*, OS X*: –fp-model precise –fp-model source
Windows*: /fp:precise /fp:source
Approx. 12-15% slower performance for SPECCPU2006fp

• Don’t mix math libraries from different compiler versions!

• Using different processor types (of same architecture), specify:
Linux*, OS X*: -fimf-arch-consistency=true
Windows*: /Qimf-arch-consistency:true

More information:
http://software.intel.com/en-us/articles/consistency-of-floating-point-
results-using-the-intel-compiler

Recommendation

36

http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler
http://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction

• How to Use

• Compiler Highlights

• Numerical Stability

• What‘s New (16.0)?

• Summary

37

Agenda

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

38

Intel® C/C++ & Fortran Compilers 16.0
What’s New?

• BLOCK_LOOP directive, block_loop pragma

• Annotated Source Listing:

•

[/Q|-q]opt-report-annotate=[text|html],
[/Q|-q]opt-report-annotate-position=[caller|callee|both]

 1 int* foo(int* a, int* b, int upperbound){

 2

 3 int* c = new int[upperbound];

 4 #pragma omp parallel for

OpenMP DEFINED LOOP WAS PARALLELIZED

 5 for (int i = 0; i < upperbound; ++i) {

LOOP BEGIN at Test/library.cpp(5,2)

<Peeled>

LOOP END

LOOP BEGIN at Test/library.cpp(5,2)

 remark #25460: No loop optimizations reported

LOOP END

…

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

39

New for Fortran

• Submodules from Fortran 2008

• IMPURE ELEMENTAL from Fortran 2008

• Further C Interoperability from Fortran 2015 (TS29113)

• Fortran 2015 TYPE(*), DIMENSION(..), RANK intrinsic, attributes for args
with BIND

• -init enhancements

• -fpp-name option

Status of Fortran support:
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards

https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards
https://software.intel.com/en-us/articles/intel-fortran-compiler-support-for-fortran-language-standards

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

40

New for C/C++

• Compile time improvements:

• Intrinsic prototypes are excluded

• Restore behavior with -D__INTEL_COMPILER_USE_INTRINSIC_PROTOTYPES

• Operators are now overloaded to allow SIMD intrinsic types

• Honoring parenthesis with -f[no-]protect-parens

• Improved C++14 (generic lambdas, member initializers, aggregates, …)

• Improved C11 (_Static_assert, _Generic, _Noreturn, …)

• Feature macros

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Introduction

• How to Use

• Compiler Highlights

• Numerical Stability

• What‘s New (16.0)?

• Summary

41

Agenda

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Summary

Intel® C++ and Intel® Fortran Compilers of Intel® Parallel Studio
provide powerful features, especially

 High level optimizations

 Auto-vectorization/-parallelization to parallelize serial code

 Sophisticated programming methods for multithreading

 Runs on GNU* environments or integrates into Eclipse (Linux*)

More information on Intel’s software offerings and services at
http://software.intel.com

42

http://software.intel.com/

Copyright © 2015, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

43

