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Introduction 
This lab shows you how to use the Intel® Math Kernel Library (Intel® MKL) as a way to 

maintain portable source that can take maximum advantage of the performance related 

architectural features of Intel® processors. You begin with compiling and optimizing source 

code for matrix multiply, and then progressively modify the source to use different Intel 

MKL routines. 

 

You compile and run a matrix multiply program four ways: as source code, calling the BLAS 

function DDOT (innermost loop replaced by library call), DGEMV (innermost two loops), and 

DGEMM (all source replace by library). For the final step, the second processor is invoked to 

enable the library workload to run in parallel. Timings are taken at each step, for 

performance comparison. 

Objectives 
At the successful completion of these lab activities, you will be able to:  

 Be familiar with Intel MKL.  

 Invoke the multithreading capability of Intel MKL and identify appropriate uses of 

these functions.  

(This lab concentrates on the horse power of linear algebra, namely the matrix multiply 

operation. Since this operation is at the core of all optimization of linear algebra 

routines, the GEMM family of Intel MKL is highly optimized for Intel® architectures.) 

Equipment List 
Hardware        

 Intel® 64 based system 

o 1GB RAM (recommended) 

o 5 GB hard drive space 

Software 

 Microsoft Windows* 7, Windows XP* Professional or Red Hat Linux* 

 Microsoft Visual Studio* 2008 or 2010 for Windows 

 Intel® compilers 

 

Time Required 
One hour.
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Lab Activity 1: Build and Run a “Roll Your Own” Matrix 

Multiply Routine 

 

1. Open the file  mkl-lab1-dgemm.sln using Microsoft Visual Studio 2008 or 2010 version on 

Windows. The solution file is being developed with Microsoft Visual Studio 2010 version.  If 

you are running it on Linux, please edit mkl_lab.c using your favorite editor. 

2. Find the routine  

 

void roll_your_own_multiply(/*[in]*/double* a, 

                            /*[in]*/double*  b, 

                            /*[out]*/double*  c,  

                            /*[in]*/int N) 

 

and implement it. This routine takes in two matrices, a and b, multiplies them and puts the 

result in c. Matrices a and b are not modified. This should be a straightforward, three-nested 

loop routine.   

3. Build and test to verify your result.  

Make sure you understand the operation a*b=c.  (This activity takes about 10 minutes 

through this step to complete.) 

4. Make sure that the command line argument is always less than 7 if you want the result 

printed to verify the correctness of your implementation. This is because this program will 

print out the value of the matrices if the size of the problem uses matrices of order 1, 2, 3, 

4, 5 or 6. 

5. Compile and link using the Intel compilers.  

Warnings about unused variables and such might appear. These are an artifact of the way 

the lab is constructed. You should understand them, but do not correct for them or later 

builds will not work.  

6. Execute and verify that the results in matrix c are correct (remember how you multiply 

matrices ab=c by hand?). 

7. Execute your program by passing 500 as the command line arguments and then execute 

with argument 1000 and record your numbers: 

N    Time 

500   ----------- 

1000   ----------- 

8. Optimize using the best compiler switches that are you familiar with that are appropriate 

for this platform.  Please refer compiler documentation for details on various compiler 

optimization switches.  Do not try to modify the program. You do that in another lab 

activity. Record your times:  
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Optimized  

N   Time 

500   ----------- 

1000   ----------- 

Lab Activity 2: Replace the Innermost Loop with a Library 

Function Call 

 

1. Eidt the file mkl_lab.cpp 

2. Find the routine  

 
  void Ddot_Multiply(/*[in]*/double* a, 

      /*[in]*/double*  b, 

                          /*[out]*/double*  c,  

                               (/*[in]*/ int N) 

 

3. Cut and paste the implementation of the previous activity. Note that the inner most loop 

computes the dot product of two vectors.  

4. Replace the most inner loop by a call to the Intel MKL Fortarn routine DDOT or the Intel MKL 

CBLAS routine cblas_ddot().  Also, ensure that all the required header files are included. 

(This activity takes about 10 minutes through this step to complete.) 

5. Go to the function main and locate the commented code block that calls DdotMultiply and 

uncomment it.   

6. To rebuild your program on Windows using Visual Studio, Select from Project Properties-

>Configuration Properties->Intel Performance Libraries->Use MKL and select value Parallel.  

This will set the include files and library paths to Intel MKL and also select the right Intel 

MKL libraries for linking.  In Linux you must link to libiomp5 (or use –openmp compiler flag) 

and the pthread library.  Rebuild your application. 

 
 

On Linux, modify the makefile-linux to point to the MKL libraries editing the paths specified 

and run 

 

$make –f makfile-linux 

 

Please refer Intel® MKL Linking advisor tool for choosing which libraries to link from below 

url 

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/ 

 

 

      Also, refer the article on how to use MKL in Visual Studio from the Knowledge Base 

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/
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http://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-for-windows-

build-intel-mkl-program-with-intel-fortran-in-microsoft-visual-studio/ 

     

     Verify that the result is correct.  
 

7. Execute your program with 500 and 1000 passed as command line parameters.   Record 

your times for both the processor-specific and default libraries: 

 DDOT Version 

 N  Time (default)  Time (processor-specific) 

 500  -----------  ----------- 

 1000  ------------  ----------- 

Is the time for DDOT less than or greater than the “roll you own” version?  Why?   

 

What scenario would change this result? 

Lab Activity 3: Replace the Innermost Two Loops with a 

Library Function Call 

 

1. Edit the file mkl_lab.cpp. In this lab activity, you change the two inner loops of your first 

implementation roll_your_own_multiply() by a call to the Intel MKL routine DGEMV. DGEMV 

multiplies a vector by a matrix to give a vector.  

2. Find the routine    

 
  void Dgemv_multiply(/*[in]*/double* a, 

          /*[in]*/double*  b, 

                           /*[out]*/double*  c,  

                                (/*[in]*/ int N) 

 

3. Cut and paste the implementation of Activity 1.  

Note that the two inner loops compute the matrix multiply of a column vector of b by the 

matrix a. So the jth column vector of matrix c can be assigned the result of the jth column 

vector of b, multiplied by the matrix a. 

4. Replace the two inner most loops by a call to the CBLAS equivalent cblas_dgemv. The same 

remarks apply here as in Activity 2. 

5. Uncomment the code block that calls Dgemv_multiply in the main function. (This activity 

takes about 10 minutes through this step to complete.) 

6. Rebuild your program in the same manner as Activity 2.  

7. Verify that the result is correct.  

http://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-for-windows-build-intel-mkl-program-with-intel-fortran-in-microsoft-visual-studio/
http://software.intel.com/en-us/articles/intel-math-kernel-library-intel-mkl-for-windows-build-intel-mkl-program-with-intel-fortran-in-microsoft-visual-studio/
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8. Execute your program with 500 and 1000 passed as command line parameters.   Record 

your times: 

 

  DGEMV Version 

  N  Time (default library)   Time (processor-specific) 

  500  -----------  ----------- 

  1000  ------------  ----------- 

How does this compare with the previous runs?  

 

 Is this result consistent with your previous conclusions?   

 

Again, what conditions would change this result? 

 

Lab Activity 4: Replace All the Matrix Multiply Source Code 

with a Library Function Call 

 

1. Edit the file mkl_lab.cpp. In this lab activity, you change all three loops of your first 

implementation roll_your_own_multiply() by a call to Intel MKL DGEMM routine which is a 

matrix matrix product.  

2. Find the routine 
 

  void Dgemm_multiply(/*[in]*/double* a, 

                 /*[in]*/double*  b, 

                      /*[out]*/double*  c,  

                       (/*[in]*/ int N) 

 

3. Make a call to Intel MKL Fortran routine DGEMM or the CBLAS equivalent, cblas_dgemm. The 

same remarks apply here as in Activities 2 and 3.  

4. Find the code block in the main function that calls Dgemm_multiply and uncomment it.  (This 

activity takes about 10 minutes through this step to complete.) 

5. Rebuild your program in the same manner as Activities 2 and 3. 

6. Verify that the result is correct.  

7. Execute your program with 500 and 1000 passed as command line parameters.   Record 

your times: 

  DGEMM Version 

  N  Time (default library)   Time (processor-specific) 

  500  -----------  ----------- 

  1000  ------------  ----------- 
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How does this compare with the previous runs?  

 

 Is this result consistent with your previous conclusions? 

 

  Again, what conditions would change this result? 

8. Open a command window in the “release” directory and set the number of threads available 

to DGEMM by setting the environment variable OMP_NUM_THREADS. 

  

Time the results for each of the following settings: 

set MKL_NUM_THREADS=1 ___________ 

set MKL_NUM_THREADS=2 ___________ 

set MKL_NUM_THREADS=3 ___________ 

set MKL_NUM_THREADS=4 ___________  

  

How are the various timings to be explained? 

 

 

END OF LAB 
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Solutions 

 

Activity 1 

//Brute force way of matrix multiply 

void roll_your_own_multiply(double* a,double*  b,double*  c, int N) 

{ 

 int i,j,k; 

 for(i=0;i<N;i++) { 

  for(j=0;j<N;j++) { 

  c[N*i+j] = 0.;   

   for(k=0;k<N;k++) { 

    c[N*i+j] += a[N*i+k] * b[N*k+j]; 

   } 

  } 

 } 

} 

 

Activity 2 

//The ddot way to matrix multiply 

void Ddot_Multiply(double* a,double*  b,double*  c, int N) 

{  

 int i, j; 

 int incx = 1; 

 int incy = N; 

 for (i = 0; i < N; i++) { 

  for (j=0; j<N; j++) { 

   c[N*i+j] = blas_ddot(N,&a[N*i],incx,&b[j],incy); 

  } 

 } 

} 

 

Activity 3 

//DGEMV way of matrix multiply 

void Dgemv_multiply(double* a,double*  b,double*  c, int N) 

{  

 int i; 

 double alpha = 1.0, beta = 0.; 

 int incx = 1; 

 int incy = N; 

 for (i = 0; i < N; i++) { 

cblas_dgemv(CblasRowMajor,CblasNoTrans,N,N,alpha,a,N,&b[i],N,beta 

,&c[i],N); 

} 

} 
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Activity 4 

//DGEMM way. The PREFERED way, especially for large matrices 

void Dgemm_multiply(double* a,double*  b,double*  c, int N) 

{  

 double alpha = 1.0, beta = 0.; 

 int incx = 1; 

 int incy = N; 

cblas_dgemm(CblasRowMajor,CblasNoTrans,CblasNoTrans,N,N,N,alpha,b,N,a,N,beta,c,N); 

} 

 


