
1

Intel® TBB Lab

If you have any problems, don’t hesitate to ask the lecturers.

Getting Started

Introduction

Source code files are numbered according to the order of activities i.e., "00” (Getting Started),

"01", and so on. A file containing the solution is suggested by appending "_solution" to the

base name. Note, solutions may be distributed later during the tutorial, or they are given by the

next exercise.

Other useful resources are:

https://www.threadingbuildingblocks.org/

http://software.intel.com/en-us/node/467860

http://software.intel.com/en-us/intel-software-technical-documentation/

http://software.intel.com/en-us/forums/intel-threading-building-blocks/

http://software.intel.com/en-us/search/site/

The build system is based on GNU Make (via MinGW/msys on Windows). To build (or run) an

example e.g., type:

make TGT=00_getting_started
make TGT=00_getting_started ARGS="1 5 1981" run

To run the program e.g., type:

bin/intel64/00_getting_started 1975

Please refer to the file BUILD.txt to learn more about the Makefile-based build system.

Note: Answers to questions are not included into given solutions. Take your own notes, and keep

your own solutions as a reference!

Activity
Learn how a main program that employs Intel TBB may look like. In the bonus part, learn about

utilities such as a function to measure the execution time.

1. Have a look at 00_getting_started.cpp and bcome familiar with it. Try to

identify which might be a candidate loop within the gemm function to parallelize.

2. Compile the code as is by using the supplied Makefile . For example, type make.

https://www.threadingbuildingblocks.org/
http://software.intel.com/en-us/node/467860
http://software.intel.com/en-us/intel-software-technical-documentation/
http://software.intel.com/en-us/forums/intel-threading-building-blocks/
http://software.intel.com/en-us/search/site/

2

Bonus

I. Introduce a task_scheduler_init object to ask for a specific number of threads.

How to use all cores similar to the implicit/default initialization?

II. Use tick_count::now()to measure the duration of the calculation

Parallel For

Introduction
Although the library is not specifically tailored towards loop-nested HPC workloads, Intel TBB

scales into data-parallel and compute-intensive domains. In fact, the task scheduler is unfair and

is intended to schedule actual work rather than managing situations that are highly lock-

contented.

Activity
This activity continues with the introduced general matrix-vector multiplication (“gemm” with α

= 1, and β = 0). Learn about loop parallelization and how λ-expressions (C++ 11) frequently help

to make the code more readable. Have a look at 01_parallel_for.cpp!

1. Apply parallel_for (by using blocked_range) to the outer loop of gemm, and

implement the loop body by using a functor! Have a look at the functor below, and note

its state in contrast to a function that is conceptually stateless.

struct functor {

 int i;

 explicit functor(int i_): i(i_) {}

 void operator()(int j) const {

 std::cout << "i + j = " << (i + j) << '\n'

 }

};

functor f(2507);

f(1975);

2. Use an affinity_partitioner as argument of your parallel_for. Why is this

partitioner supplied in a non-const manner compared to the default

auto_partitioner?

Note, there is an overloaded parallel_for with a signature that takes (begin index, end

index, body) instead of taking a blocked_range object.

Bonus
I. Choose the lower scheduling overhead: (a) a single parallel loop that uses

blocked_range2d, or (b) two nested one-dimensional parallel_for loops.

3

II. Choose what likely gives higher performance: (a) parallel_for that uses a

synchronization primitive inside the loop body, or (b) a parallel_reduce.

III. Introduce a preprocessor symbol USE_GEMM_USE_PARALLEL_FOR. In case this

symbol is defined, use parallel_for, otherwise reuse your functor to execute in a

serial fashion!

IV. What is the grain size? Is "grain size" an argument of parallel_for?

V. Read about the STL allocator (or about Intel TBB allocators), and use the

cache_aligned_allocator for all buffers based on std::vector.

VI. Introduce the preprocessor symbol GEMM_USE_LAMBDA. Write a λ-function that

becomes the "body" of parallel_for.

Reduction Operations

Introduction
Reductions are a class of collective operations that redistribute work during a chain of fork-join

phases. Data locality might be still exploited by employing a scheme that does local work on a

per-block basis. For reduction operations with low computational intensity, the whole process is

often bound by the memory bandwidth.

Note: prior to Intel TBB 4.1, the preprocessor symbol

TBB_PREVIEW_DETERMINISTIC_REDUCE must have a non-zero value in order to make

parallel_deterministic_reduce available.

Activity
In this activity, a linear buffer (1d) is reduced to a single value (0d). The parallel reduce function

will be turned into a deterministic reduction that is able to show run-to-run reproducibility of the

final result. What is the cost of determinism in terms of performance?

1. Have a look at implementation of sum_reduce (02_reduction.cpp). Adjust the

functor of the reduction to accept an initialization value in order to be more explicit about

the initial state!

2. Keep notes of the performance of the non-deterministic reduction for different problem

sizes, and then employ TBB’s deterministic reduction algorithm.

3. Rerun the previously recorded problem sizes, and compare the performance numbers.

What is a “bathtub curve”? Fix the performance, and compare again!

4. What level of determinism is covered by parallel_deterministic_reduce?

Make your choice: (1) run to run reproducible result on the same computer with a non-

varying number of threads, (2) reproducible results even for a varying number of threads,

or (3) reproducible results regardless of the number of threads, and regardless of the

particular processor type i.e., the particular SIMD instruction set.

4

Bonus

I. Use the functional form of parallel_deterministic_reduce along with a λ-

expression of the operation in order to perform the reduction without the need for a

separate functor.

II. Try the affinity partitioner, and check whether it improves the performance of the non-

deterministic reduction. Would an improvement be visible for the first run of

sum_reduce?

Concurrent Container

Introduction
Intel TBB includes several STL-alike containers that permit multiple threads to simultaneously

invoke certain methods of the same container. The term "thread-safe" is meant to not only cover

concurrent reads, but to also allow concurrent mutual operations. The motivation behind the

concurrent containers is an additional piece of performance compared to cases where any mutual

exclusive synchronization limits "concurrent" modification of the corresponding STL-container.

Activity
Familiarize with an example application which benefits from a concurrent container. First, make

use of a mutual exclusive lock, and finally optimize the lock contention to achieve a higher

scalability by just using an Intel TBB concurrent container. Note, that C++ 11 features have been

used for this example application (λ-expressions and std::unordered_map).

1. Study the main program in 03_container.cpp, build, and run the application! Why

does the validation step eventually fails?

2. Lock the access to the container inside the body of the parallel loop. Have a look at the

resource-allocation-is-initialization idiom below, and use scoped_lock (a type that is

nested into spin_mutex) to acquire and release the lock object.

{ // construct RAII

 raii_type raii(/*args*/);

 // ...

} // destruct RAII

3. Discover both types of map_type, and measure the time for at least 10M entries!

4. Introduce concurrent_unordered_map (std::unordered_map uses the same

type arguments), and check that no lock is required in order to get correct results.

Bonus

I. Use Intel Inspector XE to detect the race condition in (a) 03_container.cpp with no

synchronization object, or in (b) 03_container_solution.cpp with no atomic

type.

5

Look into the Intel TBB reference manual, and find the table that compares the
synchronization primitives. Is there any obviously better candidate than
spin_mutex? Experiment, and measure the time!

Flow Graph

Introduction
The flow graph pattern can be used to model dependencies between tasks. Intel TBB

automatically extracts the parallelism in presence of these dependencies. For example, this can be

used to express concurrency over any kind of non-threaded functionality that needs to be

executed according to a scheme. In contrast to other parallel programming models, information

flow and dependencies are explicit as well as runtime-dynamic rather than implicitly controlled

by program logic. The flow graph feature got introduced by Intel TBB 4.0. Note: when looking

for references, the flow graph is distinct from the "task graphs" as known before Intel TBB 4.0!

Activity
This activity aims to build up a more complex expression that requires multiple evaluations of

gemv and dot functions.

Figure 1: An expression is built of gemv and dot functions, and represented by flow::graph. Each node of

the graph is given by flow::function_node objects (an action node i.e., gemv or dot are executed).

Here, gemv and dot do not employ multiple threads by themself e.g., no parallel_for is

used. To start this activity, have a look at the driver program (04_flow_graph.cpp) where

the flow graph description needs to be completed. This application will then show how much

parallelism has been automatically extracted by Intel TBB.

1. Setup the flow::function_node objects which are missed from the expression as

shown in Figure 1. The code can be placed right behind the first component of the graph

made from the variables g1, g2, and d1 (which represents the first line in Figure 1).

When finished, seven node objects have been described in addition to the given three

nodes.

2. Connect the graph nodes using flow::make_edge. When finished, six edges have

been created according to the six arrows shown in Figure 1.

3. Experiment with your solution (or 04_flow_graph_solution.cpp), and try

varying problem sizes (command line argument e.g., 512, 1024, 2048, 4096, and 8192).

Take notes about the amount of parallelism (percentage) that has been exploited. Why is it

6

possible that the parallel implementation executes reasonably faster than the shortest path

of the serial implementation?

Note, that function nodes require single-argument actions, therefore gemv and dot are adapted

by gemv_body and dot_body.

Bonus

I. Create two flow::broadcast_node objects, and exploit that two function nodes are

always fed by the same input (see try_put).

Remember the background about stateless vs. stateful functors (cf.

II. Parallel For exercise), and have a look at the given code (graph actions) where data is

updated but stored outside of the graph (referenced by pointers). Modify gemv_body to

store the results of gemv!

III. Find the note in the TBB reference documentation about how the body of a node is passed

along. Is this done by reference/pointer, or by-value? (Hint: Body Objects)

Tasks

Introduction
Intel TBB is a versatile library for parallel programming with e.g., parallel patterns, generic

algorithms, tasks, and threads where each benefits from a common lower level. It is important to

realize that “lower level” is not necessarily equivalent with “higher performance”. It always

depends on the context where it used and the configuration.

Activity
In this activity, two ways are shown to organize work that is not data-parallel but intended to

exploit compute resources as opposed to permanently run in the background, or as opposed to

require fair time slices.

1. Have a look at parallel_quicksort (05_task.cpp) and how it invokes this

algorithm for the left partition as well as the right partition. Is the scalability of

parallel_invoke limited by just launching two functors?

2. Sketch a parallel Quicksort based on tbb::task, or have a look into

04_task_solution.cpp and think about why wait_for_all is called during the

time the tree of tasks is built up.

3. What happens when the root task (qsort) is not created by every repetition that

determines the execution time of the Quicksort algorithm?

Bonus

I. Implement the Quicksort algorithm by using tbb::task_group.

