
Vectorization Developer Product Division

 Software and Service Group

Student Workbook © 2015 Intel® Corporation

1

OpenMP* 4.0 for

Intel® C++ Compiler

(Linux*)

Lab

Vectorization Developer Product Division

 Software and Service Group

Student Workbook © 2015 Intel® Corporation

2

Disclaimer
The information contained in this document is provided for informational purposes only and represents

the current view of Intel Corporation ("Intel") and its contributors ("Contributors") on, as of the date
of publication. Intel and the Contributors make no commitment to update the information contained in
this document, and Intel reserves the right to make changes at any time, without notice.

DISCLAIMER. THIS DOCUMENT, IS PROVIDED "AS IS." NEITHER INTEL, NOR THE CONTRIBUTORS
MAKE ANY REPRESENTATIONS OF ANY KIND WITH RESPECT TO PRODUCTS REFERENCED HEREIN,
WHETHER SUCH PRODUCTS ARE THOSE OF INTEL, THE CONTRIBUTORS, OR THIRD PARTIES. INTEL,

AND ITS CONTRIBUTORS EXPRESSLY DISCLAIM ANY AND ALL WARRANTIES, IMPLIED OR EXPRESS,

INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR ANY
PARTICULAR PURPOSE, NON-INFRINGEMENT, AND ANY WARRANTY ARISING OUT OF THE
INFORMATION CONTAINED HEREIN, INCLUDING WITHOUT LIMITATION, ANY PRODUCTS,
SPECIFICATIONS, OR OTHER MATERIALS REFERENCED HEREIN. INTEL, AND ITS CONTRIBUTORS DO
NOT WARRANT THAT THIS DOCUMENT IS FREE FROM ERRORS, OR THAT ANY PRODUCTS OR OTHER
TECHNOLOGY DEVELOPED IN CONFORMANCE WITH THIS DOCUMENT WILL PERFORM IN THE

INTENDED MANNER, OR WILL BE FREE FROM INFRINGEMENT OF THIRD PARTY PROPRIETARY
RIGHTS, AND INTEL, AND ITS CONTRIBUTORS DISCLAIM ALL LIABILITY THEREFOR. INTEL, AND ITS
CONTRIBUTORS DO NOT WARRANT THAT ANY PRODUCT REFERENCED HEREIN OR ANY PRODUCT OR
TECHNOLOGY DEVELOPED IN RELIANCE UPON THIS DOCUMENT, IN WHOLE OR IN PART, WILL BE
SUFFICIENT, ACCURATE, RELIABLE, COMPLETE, FREE FROM DEFECTS OR SAFE FOR ITS INTENDED
PURPOSE, AND HEREBY DISCLAIM ALL LIABILITIES THEREFOR. ANY PERSON MAKING, USING OR
SELLING SUCH PRODUCT OR TECHNOLOGY DOES SO AT HIS OR HER OWN RISK.

Licenses may be required. Intel, its contributors and others may have patents or pending patent
applications, trademarks, copyrights or other intellectual proprietary rights covering subject matter
contained or described in this document. No license, express, implied, by estoppels or otherwise, to
any intellectual property rights of Intel or any other party is granted herein. It is your responsibility to
seek licenses for such intellectual property rights from Intel and others where appropriate. Limited

License Grant. Intel hereby grants you a limited copyright license to copy this document for your use
and internal distribution only. You may not distribute this document externally, in whole or in part, to
any other person or entity. LIMITED LIABILITY. IN NO EVENT SHALL INTEL, OR ITS CONTRIBUTORS
HAVE ANY LIABILITY TO YOU OR TO ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA,
LOSS OF USE OR COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF YOUR USE OF THIS
DOCUMENT OR RELIANCE UPON THE INFORMATION CONTAINED HEREIN, UNDER ANY CAUSE OF

ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL, OR ANY CONTRIBUTOR
HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS SHALL APPLY
NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY LIMITED REMEDY.

Vectorization Developer Product Division

 Software and Service Group

Student Workbook © 2015 Intel® Corporation

3

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for

optimizations that are not unique to Intel microprocessors. These optimizations include SSE2®, SSE3,
and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability,
functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.
Microprocessor-dependent optimizations in this product are intended for use with Intel
microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more

information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

See: http://software.intel.com/en-us/articles/optimization-notice/

Intel and Intel logo are trademarks or registered trademarks of Intel Corporation or its subsidiaries in
the United States and other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All Rights Reserved.

http://software.intel.com/en-us/articles/optimization-notice/

Vectorization Developer Product Division

 Software and Service Group

Student Workbook © 2015 Intel® Corporation

4

C/C++

Activity 1 – Cancellation

To demonstrate the new OpenMP* 4.0 cancellation points, we use a simple application. This
application initializes an array “val” with “0”. In a parallel section it finally sets the values of the array

to “1”. However, assume that within the parallel section there is an interims result “255” written to it.
This should never show up in the final result – even if the parallel section is cancelled!

1. Take a look at the source code of the application cancel.c. Compile and execute it:

$ icc –openmp cancel.c -o cancel

$./cancel

1
1
1 1 1 1

2. Introduce the cancellation point where it is safe to interrupt the parallel section. To actually
trigger the cancellation, issue a cancel at the iteration “i == 50”.

Note:
In order to enable cancelation points, set $OMP_CANCELLATION=1.

Solution: solutions/cancel.c

Activity 2 – Taskgroup

The taskgroup directive allows to wait for all tasks created underneath the current scope. Let’s use a

simple application that creates a binary tree. In the end we calculate the nodes of that tree in a
recursively traversing way, spawning a separate task for every node.

1. Take a look at the source code of the application taskgroup.c. Compile and execute it:

$ icc –openmp taskgroup.c -o taskgroup

$./taskgroup

40

Total count: 1

Apparently we did not wait for all tasks to complete. OpenMP* 3.x had a construct taskwait

already. However, this does not work here, since tasks are recursively created and the
taskwait construct only waits for tasks directly created by the current scope (and not its child

tasks).

2. Confirm that taskwait is not sufficient here.

3. Use taskgroup instead and confirm that the result is correct.

Solution: solutions/taskgroup.c

Vectorization Developer Product Division

 Software and Service Group

Student Workbook © 2015 Intel® Corporation

5

Activity 3 – Task Dependencies

The ability to create multiple tasks and define their dependences during runtime is another new
feature of OpenMP* 4.0. Again, we’re using a simple example to demonstrate this. The example

creates the sum of all elements of array “val” where each is decremented before. The decrement and
the summing could be considered as two different tasks (just for this simple example – not meaningful
for a real world application!). Since both will then operate on the same element “val[i]”, their
dependency needs to be defined.

1. Take a look at the source code of the application taskdep.c. Compile and execute it:

$ icc –openmp taskdep.c -o taskdep

$./taskdep

40

6

2. In the original example no tasks have been created. Create the tasks now in a way to have
“val[i]--;” and the block with “res += val[i];” executed as separate tasks.

3. When just creating the tasks, the result is incorrect, because the dependencies of “val[i]” are
not defined. Define them now and verify the result.

Solution: solutions/taskdep.c

Activity 4 – User Defined Reductions

Note:

This new feature requires Intel® C++ Compiler 16.0!

Prior to OpenMP* 4.0, reductions were only possible for pre-defined operations (add, min, max, …).
The current version of OpenMP* does allow users to create their own reductions.

Let’s take a small example with an array of structures (2D points). To find the minimum and
maximum coordinates of all the elements in the array a parallel for loop is used.

1. Take a look at the source code of the application udr.c. Compile and execute it:

$ icc –openmp udr.c -o udr

$./udr

min: {-3,-3}

max: {1,9}

2. The finding of the min. and max. values was done in a parallel for loop. The results are not

always correct since the tests and storing of min. and max. values inside the parallel for loop
are reductions. The reductions, however, have not been used. Define them now, rerun the
application and verify the correctness.

Solution: solutions/udr.c

