
Intel® Threading Building Blocks

Software and Services Group
Intel Corporation

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

2

Agenda

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

3

Introduction
Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Parallel challenges

4

“Parallel hardware needs parallel programming”

P
e
rf

o
rm

a
n

c
e

GHz Era

Time

Multicore Era Manycore Era

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

5

Intel® Parallel Studio XE 2015

Composer Edition

Threading design &
prototyping

Parallel performance tuning
Memory & thread

correctness

Professional Edition

Intel® C++ and Fortran
compilers

Parallel models Optimized libraries

Multi-fabric MPI library
MPI error checking and

tuning

Cluster Edition

Intel® Threading Building Blocks
Intel® OpenMP
Intel® Cilk™ Plus

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

6

A key ingredient in Intel® Parallel Studio XE
Try it for 30 days free: http://intel.ly/perf-tools

Intel® Parallel Studio
XE Composer

Edition1

Intel® Parallel Studio
XE Professional

Edition1

Intel® Parallel
Studio XE

Cluster Edition9

Intel® C++ Compiler √ √ √

Intel® Fortran Compiler √ √ √

Intel® Threading Building Blocks (C++ only) √ √ √

Intel® Integrated Performance Primitives
(C++ only)

√ √ √

Intel® Math Kernel Library √ √ √

Intel® Cilk™ Plus (C++ only) √ √ √

Intel® OpenMP* √ √ √

Rogue Wave IMSL* Library2 (Fortran only) Add-on Add-on Bundled and Add-on

Intel® Advisor XE √ √

Intel® Inspector XE √ √

Intel® VTune™ Amplifier XE4 √ √

Intel® MPI Library4 √

Intel® Trace Analyzer and Collector √

Operating System

(Development Environment)

Windows* (Visual

Studio*)

Linux* (GNU)

OS X*3 (XCode*)

Windows (Visual

Studio)

Linux (GNU)

Windows (Visual

Studio)

Linux (GNU)

Notes:
1 Available with a single language (C++ or Fortran) or both languages.
2 Available as an add-on to any Windows Fortran* suite or bundled with a version of the Composer Edition.
3 Available as single language suites on OS X.
4 Available bundled in a suite or standalone

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

7

Introduction

Intel® Threading Building Blocks overview
Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Intel® Threading Building Blocks (Intel® TBB)

What

 Widely used C++ template library for task parallelism.

 Features

 Parallel algorithms and data structures.

 Threads and synchronization primitives.

 Scalable memory allocation and task scheduling.

Benefit

 Rich feature set for general purpose parallelism.

 Available as an open source and a commercial license.

 Supports C++, Windows*, Linux*, OS X*, other OS’s.

 Commercial support for Intel® Atom™, Core™, Xeon® processors, and for Intel®
Xeon Phi™ coprocessors

Also available as open source at
threadingbuildingblocks.org

Simplify Parallelism with a Scalable Parallel Model

https://software.intel.com/intel-tbb

8

https://software.intel.com/en-us/intel-tbb

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Didn’t we solve the Threading problem
in the 1990s?

9

Pthreads standard: IEEE 1003.1c-1995
OpenMP standard: 1997

Yes, but…
• How to split up work? How to keep caches hot?
• How to balance load between threads?
• What about nested parallelism (call chain)?

Programming with threads is HARD
• Atomicity, ordering, and/vs. scalability
• Data races, dead locks, etc.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

 Parallel pattern: commonly occurring combination of
task distribution and data access

 A small number of patterns can support a wide range of
applications

 Identify and use parallel patterns
Examples: reduction, or pipeline

TBB has primitives and algorithms for most common
patterns – don’t reinvent a wheel

10

Design patterns

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Parallel Patterns

11

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

12

Generic Parallel
Algorithms

Efficient scalable way to
exploit the power of
multi-core without
having to start from

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to
containers that are externally locked for thread-

safety

Thread Local Storage

Efficient
implementation for

unlimited number of
thread-local

variables

Task Scheduler

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow graph

Threads

OS API
wrappers

Timers and
Exceptions

Thread-safe
timers and
exception

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with
different properties, condition variables

Flow Graph

A set of classes to
express parallelism as

a graph of compute
dependencies and/or

data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task
scheduling

Rich Feature Set
for Parallelism

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

13

Generic Parallel
Algorithms

• parallel_for
• parallel_reduce
• parallel_for_each
• parallel_do
• parallel_invoke
• parallel_sort
• parallel_deterministic_reduce
• parallel_scan
• parallel_pipeline
• pipeline

Concurrent Containers

• concurrent_unordered_map
• concurrent_unordered_multimap
• concurrent_unordered_set
• concurrent_unordered_multiset
• concurrent_hash_map

• concurrent_queue
• concurrent_bounded_queue
• concurrent_priority_queue
• concurrent_vector
• concurrent_lru_cache

Thread Local Storage

• combinable
• enumerable_thread_specific

Task Scheduler

• task
• task_group
• structured_task_group
• task_group_context

• task_scheduler_init
• task_scheduler_observer
• task_arena

Threads
& timers

Thread

tick_count

Memory Allocation

• tbb_allocator
• scalable_allocator

• cache_aligned_allocator
• zero_allocator

• aligned_space
• memory_pool (preview)

Synchronization Primitives

• atomic
• mutex
• recursive_mutex
• spin_mutex
• spin_rw_mutex
• speculative_spin_mutex
• speculative_spin_rw_mutex

• queuing_mutex
• queuing_rw_mutex
• null_mutex
• null_rw_mutex
• reader_writer_lock
• critical_section
• condition_variable
• aggregator (preview)

Flow Graph

• graph
• continue_node
• source_node
• function_node
• multifunction_node
• overwrite_node
• write_once_node
• limiter_node
• buffer_node
• queue_node
• priority_queue_node
• sequencer_node
• broadcast_node
• join_node
• split_node
• indexer_node

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task
scheduling

Features and Functions List

Exceptions

• tbb_exception
• captured_exception
• movable_exception

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Structure used to organize parallel computations

14

Algorithm Structure Design Space

Pipeline

Organized by flow
of data

Linear? Recursive?

Organized by tasks

Linear? Recursive?

Organized by data

Recursive
Data

Regular? Irregular?

Task
Parallelism

Geometric
Decomposition

Divide and
Conquer

Event-based
Coordination

How is the computation structured?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Structure used to organize parallel computations

15

Algorithm Structure Design Space

Pipeline

Organized by flow
of data

Linear? Recursive?

Organized by tasks

Linear? Recursive?

Organized by data

Recursive
Data

Regular? Irregular?

Task
Parallelism

Geometric
Decomposition

Divide and
Conquer

Event-based
Coordination

How is the computation structured?

parallel_for tbb::task parallel_pipeline

flow::graphtask_group parallel_invoke

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

16

Introduction

Intel® Threading Building Blocks overview

Tasks concept
Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

17

Tasks and parallel algorithms

for (i=0; i<12; i++)
do_work();

for (i=0; i<4; i++)
do_work();

for (i=4; i<8; i++)
do_work();

for (i=8; i<12; i++)
do_work();

task

Serial algorithm

Computation is divided
into portions, or tasks

task task

Tasks can be executed
concurrently

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Worker
thread

task

18

Task Execution

Worker
thread

task

task
task

Local task pool

Execution

Worker
thread

task

task

Steal

task

Task starting

task

task

Intel TBB runtime dynamically maps tasks to threads

Automatic load balance, not fair, lock-free whenever possible

task task

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

19

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms
Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Loop parallelization

parallel_for

parallel_reduce

- load balanced parallel execution

- fixed number of independent iterations

parallel_deterministic_reduce

- run-to-run reproducible results

parallel_scan

- computes parallel prefix

y[i] = y[i-1] op x[i]

Parallel Algorithms for Streams

parallel_do

- Use for unstructured stream or pile of work

- Can add additional work to pile while running

parallel_for_each

- parallel_do without an additional work feeder

pipeline / parallel_pipeline

- Linear pipeline of stages

- Each stage can be parallel or serial in-order or serial
out-of-order.

- Uses cache efficiently

Parallel function invocation

parallel_invoke

task_group

- Parallel execution of a number of user-specified
functions

Parallel sorting

parallel_sort

Computational graph

flow::graph

- Implements dependencies between tasks

- Pass messages between tasks

Generic parallel algorithms

20
20

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Let’s start with simple example

std::for_each(Iterator, Iterator, Func);

and implement with std algorithm:

21

#include <algorithm>
#define N 10

int main (){
float a[N];
// initialize array here…

for (int i=0; i<N; i++){
a[i] = sqrt(a[i]);

}
return 0;

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

std::for_each
#include <vector>
#include <algorithm>
#define N 10

int main (){
int a[N];
// initialize array here…
std::vector<float> array;

for (int i=0; i<N; i++){
array.push_back(a[i]);

}

std::for_each (array.begin(), array.end(),
[=](float & elem) {

sqrt(elem);
});

return 0;
}

22

A call to a template function

for_each<Iterator, Iterator, Func>:

with arguments

Iterator  array.begin

Iterator  array.end

Operation  Lambda or a functor

Loop body as C++ lambda expression

Interval

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

tbb::parallel_for_each
#include <vector>
#include <tbb/blocked_range.h>
#include <tbb/parallel_for_each.h>
#define N 10

int main (){
int a[N];

// initialize array here…
std::vector<float> array;

for (int i=0; i<N; i++){
array.push_back(a[i]);

}

tbb::parallel_for_each (array.begin(), array.end(),
[=](float & elem) {

sqrt(elem);
});

return 0;
}

23

parallel_for_each<Iterator, Iterator, Func>:

created several tasks with lambda body

invocation and the runtime executes them
in parallel

Task: loop body as C++ lambda expression

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A simple computational example

Try to parallelize it, and then check work balance 

24

#include <algorithm>
#define N 10

inline int Prime(int & x) {
int limit, factor = 3;
limit = (long)(sqrtf((float)x)+0.5f);
while((factor <= limit) && (x % factor))

factor ++;
x = (factor > limit ? x : 0);

}

int main (){
int a[N];
// initialize array here…
for (int i=0; i<N; i++){

Prime(a[i]);
}
return 0;

}

Some non-trivial computation on
an integer element

Applying the computation Prime()
to each element of the array

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

wait

Parallel execution with equal range

Thread1Prime[1, N/4]

Thread2

Thread3

Thread4

time

Prime[N/4+1, N/2]

Prime[N/2+1, N/2+N/4]

Prime[N/2+N/4+1, N]

Thread1Prime[1, N/4]

Thread2

Thread3

Thread4

time

Prime[N/4+1, N/2]

Prime[N/2+1, N/2+N/4]

Prime[N/2+N/4+1, N]

wait

wait

Expected

In fact

Reality is even worse due to OS scheduling 

25

Lost time due to work imbalance

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

tbb::parallel_for
Has several forms.

parallel_for(lower, upper, functor);

Execute functor(i) for all i  [lower,upper)

parallel_for(lower, upper, stride, functor);

Execute functor(i) for all i  {lower,lower+stride,lower+2*stride,...}

parallel_for(range, functor);

Execute functor(subrange) for all subrange in range

26

Map

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

tbb::parallel_for
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#define N 10

inline int Prime(int & x) {
int limit, factor = 3;
limit = (long)(sqrtf((float)x)+0.5f);
while((factor <= limit) && (x % factor))

factor ++;
x = (factor > limit ? x : 0);

}

int main (){
int a[N];
// initialize array here…
tbb::parallel_for (0, N, 1,

[&](int i){
Prime (a[i]);

});
return 0;

}

27

A call to a template function

parallel_for (lower, upper, stride, functor)

Task: loop body as C++ lambda expression

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

tbb::parallel_for
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#define N 10

inline int Prime(int & x) {
int limit, factor = 3;
limit = (long)(sqrtf((float)x)+0.5f);
while((factor <= limit) && (x % factor))

factor ++;
x = (factor > limit ? x : 0);

}
int main (){

int a[N];
// initialize array here…
tbb::parallel_for (tbb::blocked_range<size_t>(0,N,1),

[&](const tbb::blocked_range<size_t>& r){
for (int i=r.begin(); i!=r.end(); i++){

Prime (a[i]);
}

});
return 0;

}
28

A call to a template function

parallel_for (range, functor)

blocked_range – TBB template
representing 1D iteration space

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

tbb::parallel_for
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#define N 10

class ChangeArray{
int* array;

public:
ChangeArray (int* a): array(a) {}
void operator()(const tbb::blocked_range<size_t>& r) const{

for (int i=r.begin(); i!=r.end(); i++){
Prime (array[i]);

}
}

};

int main (){
int a[N];
// initialize array here…
tbb::parallel_for (tbb::blocked_range<size_t>(0,N,1), ChangeArray(a));
return 0;

}

29

inline int Prime(int & x) {
int limit, factor = 3;
limit = (long)(sqrtf((float)x)+0.5f);
while((factor <= limit) && (x % factor))

factor ++;
x = (factor > limit ? x : 0);

}

A call to a template function

parallel_for (range, functor) Loop body as functor

Functor

The main work is done inside operator()

operator() body is the task that is invocated multiple times in parallel

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

template <typename Range, typename Body>
void parallel_for (const Range& range, const Body &body);

Requirements for parallel_for Body

parallel_for partitions original range into subranges, and deals out
subranges to worker threads in way that:

• Balances load

• Uses cache efficiently

• Scales

Body::Body(const Body&) Copy constructor

Body::~Body() Destructor

void Body::operator() (Range& subrange) const Apply the body to
subrange.

30

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Range concept
Represents a recursively divisible set of values

Requirements for parallel_for Range

Library provides models:

blocked_range models a one-dimensional range

blocked_range2d models a two-dimensional range

blocked_range3d models a three-dimensional range

You can define your own ranges

R::R (const R&) Copy constructor

R::~R() Destructor

bool R::empty() const True if range is empty

bool R::is_divisible() const True if range can be partitioned

R::R (R& r, Split) Split r into two subranges

31

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Grain Size concept
blocked_range specifies grainsize of type size_t

Part of parallel_for, not underlying task scheduler

• Grain size exists to amortize overhead, not balance load.

• Units are iterations

Typically only have to get it right within an order of magnitude

• If too fine, scheduling overhead dominates

• If too coarse, lose some potential parallelism

• When in doubt, err on the side of making it too large

Too fine
scheduling
overhead
dominates

Too coarse
lose potential
parallelism

32

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Partitioner - optional argument

33

tbb::parallel_for(range, functor, tbb::simple_partitioner());

tbb::parallel_for(range, functor, affinity_partitioner());

tbb::parallel_for(range, functor, tbb::auto_partitioner());

Recurse all the way down range

Uses heuristics to dynamically adjust recursion depth

Replay with cache optimization

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

[Data, Data+N)

[Data, Data+N/2)
[Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

tasks available to
thieves

34

Split range...

.. recursively...

...until 
GrainSize

Recursive parallelism

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Using special template function:

Using thread local data:

parallel_reduce(range, identity, functor, combine);

Lambda-friendly: with identity value and separate functors

parallel_reduce(range, body);

“Simpler” form that requires a special body class

enumerable_thread_specific<T> globalVar;
localCopy = globalVar.local();

35

Reduction pattern

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

36

Example: Thread-local Storage (TLS)

#include "tbb/enumerable_thread_specific.h"
#include "tbb/parallel_for.h"

float array[] = { 1, 2, 3, 4, 5, 6, 7, 8 };
tbb::enumerable_thread_specific<float> tls(0.f);

int main (){
tbb::parallel_for(0, 8, [&](int i) {

float& accum = tls.local();
accum += array[i];

});
float sum = 0;

for (auto i = tls.begin(); i < tls.end(); ++i) {
sum += *i;

}
}

Thread local container

Local copy

Serial reduction

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

37

parallel_reduce: the imperative form

#include "tbb/blocked_range.h"
#include "tbb/parallel_reduce.h"

struct Sum {
float value;
Sum() : value(0) {}
Sum(Sum& s, split) {value = 0;}
void operator()(const tbb::blocked_range<float*>& r) {

float temp = value;
for(float* a=r.begin(); a!=r.end(); ++a) {

temp += *a;
}
value = temp;

}
void join(Sum& rhs) {value += rhs.value;}

};

int ParallelSum (float array[], size_t n) {
Sum total;
tbb::parallel_reduce(tbb::blocked_range<float*>(array, array+n), total);
return total.value;

}

Setting initial value

Splitting constructor

Summing up elements in sub-range

Combine results from all bodies

Body class object

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

38

parallel_reduce: the functional form

#include <numeric>
#include <functional>
#include "tbb/blocked_range.h"
#include "tbb/parallel_reduce.h"
using namespace tbb;

float ParallelSum(float array[], size_t n) {
return parallel_reduce(

blocked_range<float*>(array, array+n),
0.f,
[](const blocked_range<float*>& r, float value)->float {

return std::accumulate(r.begin(),r.end(),value);
},
std::plus<float>()

);
}

Identity value

Initial value for reducing
sub-range r

Reduce sub-range

ComCombining sub-range results

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Determinism of reduction

39

For non-associative operations, parallel_reduce does not guarantee
deterministic results

• Re-association of operations done differently

• Depends on the number of threads, the partitioner used, and on
which ranges are stolen.

Solution: parallel_deterministic_reduce

• Uses deterministic reduction tree.

• Generates deterministic result even for floating-point.

– But different from serial execution

• Partitioners are disallowed

• Specification of grainsize is highly recommended.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

40

parallel_reduce: the functional form

sum = tbb::parallel_deterministic_reduce (
tbb::blocked_range<int>(0,n,10000),
0.f,
[&](tbb::blocked_range<int> r, T s) -> float
{

for(int i=r.begin(); i!=r.end(); ++i)
s += a[i];

return s;
},
std::plus<T>()

);

Grainsize

parallel_deterministic_reduce(range, identity, functor, combine);

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Fork-Join pattern

task_group g;

...

g.run(functor1);

...

g.run(functor2);

...

g.wait();

Useful for n-way fork when n is a small constant.

parallel_invoke(functor1, functor2, ...);

Useful for n-way fork when n is large or a run-time value.
Allows asynchronous execution.

41

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Typical use cases for fork-join

42

Functional parallelism

• Easy to understand and use

• Does not scale on its own

Recursive divide-and-conquer problems

• Scales together with the problem

• Sometimes, can be alternatively expressed with
parallel_for/_reduce and custom ranges

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Example: Parallel Quicksort

43

* Pure Quicksort (e.g., tail recursion is not avoided)

parallel_invoke (const Func0&, const Func1&);

template<typename I>
void parallel_qsort(I begin, I end){

typedef typename std::iterator_traits<I>::value_type T;

if (begin != end) {
const I pivot = end - 1;
const I middle = std::partition(begin, pivot,

std::bind2nd(std::less<T>(), *pivot));
std::swap(*pivot, *middle);

tbb::parallel_invoke(
parallel_qsort(begin, middle),
parallel_qsort(middle + 1, end));

}
}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Example: tbb::parallel_sort

44

complexity of O(N log (N))

parallel_sort (iterator, iterator);

parallel_sort (iterator, iterator, const Compare&);

#include "tbb/parallel_sort.h“
#include <math.h>

const int N = 100000;
float a[N];
float b[N];

// initialize a and b here

parallel_sort(a, a + N);
parallel_sort(b, b + N, std::greater<float>());

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

45

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming
Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Terminology

 Thread refers to a physical thread*

 Task refers to a piece of work

Scheduler

 Maps tasks to threads (M:N relation)

 Balances resource consumption and parallelism

 Runtime-dynamic and lock-free

 Essential component of Intel® TBB

Task queuing

1. LIFO: thread-local queue (spawned tasks)

2. ~FIFO: shared global queue (enqueued tasks)

3. ~FIFO: Task-stealing (random foreign queue)

46

Task Scheduler

N Threads

M Tasks

S
ch

e
d

u
le

r

* Regardless whether SMT is used or not.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

47

Work Stealing Task Scheduler:
how does it work?

Each thread has a deque of tasks

• Newly created tasks are pushed onto the front

• When looking for tasks the thread pops from the front

• If it has no work

– Pick a random victim

– Attempt to steal a task from the back of their deque

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

[Data, Data+N)

[Data, Data+N/2)
[Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

tasks available to
thieves

48

Recursive parallelism

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

A thread executes depth
first, thus exploiting locality

49

[Data, Data+N)

[Data, Data+N/2)
[Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

Recursive parallelism

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Other worker
threads steal
work breadth
first, taking older,
larger pieces of
work

A thread executes depth
first, thus exploiting locality

50

[Data, Data+N)

[Data, Data+N/2)
[Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

Recursive parallelism

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

51

[Data, Data+N)

[Data, Data+N/2)
[Data+N/2, Data+N)

[Data, Data+N/k)

[Data, Data+GrainSize)

Recursive parallelism

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Implement the Intel® TBB task interface
to create your own tasks

#include <tbb/task.h>

class my_task: public tbb::task {
public:
tbb::task* execute() {

WORK();
return 0;

}
};

my_task* t = new (tbb::task::allocate_root())
my_task(args);

Note: please also consider tbb::parallel_invoke or tbb::task_group to just spawn
a series of functions to run in parallel.

• Derive from tbb::task class to
implement interface

• Implement execute() member
function

• Create and spawn root task and
your tasks

• Wait for tasks to finish

52

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Spawn task to emphasize locality (cache-oblivious)

 Nested parallelism tends to depth-first execution

 Similar to Intel Cilk Plus task-stealing algorithm

 Used for heavy work, and light contention

Enqueue task to emphasize fairness

 Nested parallelism tends to breadth-first execution

 Only used with clear reason

53

Spawn vs. Enqueue

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

54

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning
Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

1. Tune the grain size (argument of blocked range)

 Usually not beneficial*

 Consider auto-tuning

2. Control affinity

 Use affinity_partitioner with parallel_for & parallel_reduce

 Specifies an “affinity domain”

 Stores state to use as a hint by subsequent parallel algorithms

 Use task_scheduler_observer to adjust thread affinity (pinning)

3. Interleave memory allocation (NUMA)

 Linux: numactl –i all ...

55

Performance Tuning

* Conceptually, an explicitly set grain size would also disable a runtime-dynamic adjustment.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

56

Example: Grain Size (Auto-chunking)

#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>

int grainsize=16;

void sum(int* result, const int* a, const int* b, std::size_t size){
tbb::parallel_for(tbb::blocked_range<std::size_t>(0, size, grainsize),

[=](const tbb::blocked_range<std::size_t>& r) {
for (std::size_t i = r.begin(); i != r.end(); ++i) {

result[i] = a[i] + b[i];
}

}
);

}

grainsize limits minimum chunk size.
But TBB scheduler may choose bigger
chunks.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

57

Example: Grain Size (Max. Control)

#include <tbb/parallel_for.h>
#include <tbb/blocked_range.h>

tbb::simple_partitioner partitioner;

int grainsize=16;

void sum(int* result, const int* a, const int* b, std::size_t size){
tbb::parallel_for(tbb::blocked_range<std::size_t>(0, size, grainsize),

[=](const tbb::blocked_range<std::size_t>& r) {
for (std::size_t i = r.begin(); i != r.end(); ++i) {

result[i] = a[i] + b[i];
}

},
partitioner

);
}

Simple partitioner makes TBB scheduler
to divide chunks until grainsize limit is
reached.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

58

Example: Affinity Partitioner

#include "tbb/tbb.h"

void ParallelApplyFoo(float a[], size_t n) {
static tbb::affinity_partitioner partitioner;
tbb::parallel_for(tbb::blocked_range<size_t>(0,n),

ApplyFoo(a), partitioner);
}

void TimeStepFoo(float a[], size_t n, int steps) {
for(int t=0; t<steps; ++t)

ParallelApplyFoo(a, n);
}

Use affinity partitioner when:

 The computation does a few operations per data access.

 The data acted upon by the loop fits into cache.

 The loop, or a similar loop, is re-executed over the same data.

 There are more than two hardware threads available.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

• Grain size tuning

 Usually not necessary with auto/affinity partitioner

 Keep in mind: developer’s system != target system (usually)

 Recommended for deterministic algorithms that rely on
simple_partitioner e.g., parallel_deterministic_reduce

• Affinitization

 Threads (core and SMT): not recommended beyond the use of affinity
partitioner (observer method tends to hardcode strategy e.g., “compact”,
round-robin, etc.)

 Socket: recommended for heterogeneous programs (MPI)

 Pin each process to a socket (via e.g., I_MPI_* env. var.)

59

Tuning?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

60

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline
Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Parallel Pipeline

61

Linear pipeline of stages

• You specify maximum number of items that can be in flight

• Handle arbitrary DAG by mapping onto linear pipeline

Each stage can be serial or parallel

• Serial stage processes one item at a time, in order.

• Parallel stage can process multiple items at a time, out of order.

Uses cache efficiently

• Each worker thread flies an item through as many stages as possible

• Biases towards finishing old items before tackling new ones

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

13

2

4

5

6

7

8

9

101112

62

Parallel stage scales because
it can process items in
parallel or out of order.

Serial stage processes items
one at a time in order. Another serial stage.

Items wait for turn
in serial stage

Controls excessive parallelism
by limiting total number of
items flowing through pipeline.

Uses sequence
numbers recover
order for serial stage.

Tag incoming items with
sequence numbers

Throughput is limited by throughput
of the slowest serial stage.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Pipeline Pattern
f

g

h

63

tbb::parallel_pipeline (
ntoken,
make_filter<void,T>(

filter::serial_in_order,
[&](flow_control & fc) -> T{

T item = f();
if(!item) fc.stop();
return item;

}
) &
make_filter<T,U>(

filter::parallel,
g

) &
make_filter<U,void>(

filter:: serial_in_order,
h

)
);

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Serial vs. Parallel Stages

Serial stage has
associated state.

make_filter<X,Y>(
filter::serial_in_order,
[&](X x) -> Y {

extern int count;
++count;
Y y = bar(x);
return y;

}
)

Parallel stage is
functional transform.

make_filter<X,Y>(
filter::parallel,
[](X x) -> Y {

Y y = foo(x);
return y;

}
)

64

<from,to>

You must ensure that
parallel invocations of
foo are safe.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

In-Order vs. Out-of-Order Serial Stages

f

g

h

e

d

Each in-order stage receives values in
the order the previous in-order stage
returns them.

Out-of-order stages process data
serially, but the order is not
deterministic.

65

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

make_filter<X,void>(
filter::serial_in_order,
[&](X x) {

cout << x;
}

)

Special Rules for First & Last Stage

make_filter<void,Y>(
filter::serial_in_order,
[&](flow_control& fc) -> Y {

Y y;
cin >> y;
if(cin.fail()) fc.stop();
return y;

}
)

“from” type is void

All filter types
allowed

First stage receives
special flow_control
argument.

The return value is passed further
through the pipeline, but ignored
after a call to flow_control::stop()“to” type is void

66

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Composing Stages

make_filter<X,Y>(
...

)
&
make_filter<Y,Z>(

...
)

• Compose stages with operator&

X

Y

Z

Type Algebra

make_filter<T,U>(mode,functor)  filter_t<T,U>

filter_t<T,U> & filter_t<U,V>  filter_t<T,V>

67

types must match

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Running the Pipeline

parallel_pipeline(
size_t ntoken, const filter_t<void,void>& filter);

Token limit.
Filter must map
voidvoid

Attempts to use cache efficiently

• A thread tries to proceed through as many stages as possible

• Biases towards finishing old items before tackling new ones

Functional decomposition is usually not scalable.
Parallel stages [may] make parallel_pipeline scalable.
Still, throughput limited by that of the slowest serial stage.

68

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

parallel_pipeline

float RootMeanSquare(float* first, float* last) {
float sum=0;
parallel_pipeline(/*max_number_of_tokens=*/16,

make_filter<void,float*>(
filter::serial,
[&](flow_control& fc)->float*{

if(first<last) {
return first++;

} else {
fc.stop(); // stop processing
return NULL;

}
}

) &
make_filter<float*,float>(

filter::parallel,
[](float* p) ->float* {return (*p)*(*p);}

) &
make_filter<float,void>(

filter::serial,
[&sum](float x) {sum+=x;}

)
);
// sum=first2+(first+1)2 + … +(last-1)2
// computed in parallel
return sqrt(sum);

}

Call function tbb::parallel_pipeline

to run pipeline stages (filters)

Create pipeline stage object

tbb::make_filter<InputDataType,

OutputDataType>(mode, body)

Pipeline stage mode can be serial,

parallel, serial_in_order, or

serial_out_of_order

get new float

float*float

sum+=float2

input: void
output: float*

input: float*

output: float

input: float

output: void

69
69

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

70

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers
Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

• Several STL-alike containers (similar concepts)

 Simultaneously invoke certain methods of same container

 More performance compared to external protection (fine grained locks or
lock-free implementation)

• Thread-safety

 Usually only concurrent reads

 Concurrent mutual operations (Intel® TBB)

• Can be mixed with OpenMP*, or native threads

71

Concurrent Containers

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

concurrent_hash_map< Key, T , Hasher, Allocator >
• Models hash table of std::pair <const Key,T> elements
• Maps Key to element of type T
• User defines Hasher to specify how keys are hashed and compared
• Defaults: Allocator=tbb::tbb_allocator

concurrent_unordered_map < Key, T, Hasher, Equality, Allocator>
• Permits concurrent traversal and insertion (no concurrent erasure)
• Requires no visible locking, looks similar to STL interfaces
• Defaults: Hasher=tbb::tbb_hash, Equality=std::equal_to, Allocator=tbb::tbb_allocator
• Other unordered containers: multimap, set, multiset

concurrent_vector < T, Allocator >
• Dynamically growable array of T: grow_by and grow_to_at_least
• cache_aligned_allocator is a default allocator

concurrent_queue< T, Allocator >
• For single threaded run concurrent_queue supports regular “first-in-first-out” ordering
• If one thread pushes two values and the other thread pops those two values they will come out

in the order as they were pushed
• cache_aligned_allocator is a default allocator

concurrent_bounded_queue<T, Allocator >
• Similar to concurrent_queue with a difference that it allows specifying capacity. Once the

capacity is reached ‘push’ will wait until other elements will be popped before it can continue.

concurrent_priority_queue <T, Compare, Allocator >
• Permits to concurrently push and pop items; pops in user-specified priority order.
• Defaults: Compare=std::less, Allocator=tbb::cache_aligned_allocator

72

Concurrent Containers Key Features

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

73

Example: Concurrent Hash Table

...

NULL

NULL

NULL

NULL

NULL

protection level

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

74

Example: concurrent_hash_map

struct wordsCompare {
bool equal (const string& w1, const string& w2) const {

return w1 == w2;
}
size_t hash(const string& w) const {

size_t h = 0; for (const char* s = w.c_str(); *s; ++s) h = (h*16777179)^*s;
return h;

}
};

void ParallelWordsCounting(const text_t& text) {

parallel_for(blocked_range<size_t>(0, text.size()),
[&text](const blocked_range<int> &r) {

for(int i = r.begin(); i < r.end(); ++i) {
concurrent_hash_map<string, int, wordsCompare>::accessor acc;
wordCounters.insert(acc, text[i]);
acc->second++;

}
});

}

An element of a concurrent_hash_map

can be accessed by creating an “accessor”

object, which is somewhat like a smart

pointer implementing the necessary

data access synchronization

User-defined “wordsCompare”

class needs to implement functions

for comparing two keys and

a hashing function

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

75

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator
Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Why yet another memory allocator?

76

• Memory allocation can be (and often still is) a bottleneck
in concurrent/parallel programs

• Thread-friendly, scalable allocators are known to be
important for many real-world application

• If memory allocation is bottleneck, changing allocator
can be fast and efficient solution

76

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Using the allocator

77

• Shipped as a separate library: tbbmalloc

• Convenient interfaces:

– Substitution for malloc/realloc/free etc. calls (C and C++)

– Allocator classes to use with STL and Intel TBB containers (C++)

– Dynamic replacement of standard memory allocation routines for
the whole program (C and C++)

– Preview feature: Special classes for memory pools (C++)

• Used internally by the main Intel TBB library

– “If available”, which means: found in the same directory

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

C interface (malloc-like)

78

Allocation Routine Deallocation Routine Matches

scalable_malloc scalable_free C standard
library

scalable_calloc

scalable_realloc

scalable_posix_memalign POSIX*

scalable_aligned_malloc scalable_aligned_free Microsoft* C
run-time
library

scalable_aligned_realloc

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Additional routines

79

size_t scalable_msize(void* ptr)

Get usable size of the memory block pointed to by ptr

int scalable_allocation_mode(int mode, intptr_t value)

Adjust behavior of the memory allocator

TBBMALLOC_USE_HUGE_PAGES Use huge pages if supported by OS

TBBMALLOC_SET_SOFT_HEAP_LIMIT Set a threshold for memory use

int scalable_allocation_command(int command, void *)

Command the scalable memory allocator to perform an action

TBBMALLOC_CLEAN_ALL_BUFFERS Clean internal memory buffers

TBBMALLOC_CLEAN_THREAD_BUFFERS Same but only for the calling thread

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

C++ allocator classes

80

container< T, scalable_allocator<T> > c;

Use the Intel TBB memory allocator (tbbmalloc)

Standard-compliant API with special features

container< T, tbb_allocator<T> > c;

Use tbbmalloc DLL if available, otherwise fall back to std::malloc

container< T, cache_aligned_allocator<T> > c;

In addition to above, prevents false sharing between allocated objects

typedef tbb::scalable_allocator <double> Alloc;
std::vector<double,Alloc> buffer(1024);

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

It is possible to automatically replace calls to memory allocating
functionality with corresponding Intel® TBB function calls

This is done by the use of malloc_proxy libraries:

 Linux and OSX: libtbbmalloc_proxy.so.2 and libtbbmalloc_proxy_debug.so.2

 Windows: tbbmalloc_proxy.dll and tbbmalloc_debug_proxy.dll

81

Automatic malloc replacement

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Service function takes precedence over environment variable
(TBB_MALLOC_USE_HUGE_PAGES).

82

Example: Huge Memory Pages

#if (4 <= TBB_VERSION_MAJOR && 2 <= TBB_VERSION_MINOR)
// 0: disable, 1: enable
int status = scalable_allocation_mode (TBBMALLOC_USE_HUGE_PAGES, 1);

#endif

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

83

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives
Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Atomic operations

 High-level abstractions

Exception-safe locks

 spin_mutex is VERY FAST in lightly contended situations; use it if you need to
protect very few instructions

 Use queuing_mutex when scalability and fairness are important

 Use reader-writer (*_rw_mutex) variants to allow non-blocking read for
multiple threads

 Use recursive_mutex when your algorithm requires that one thread can re-
acquire a lock. All locks should be released by one thread for another one to
get a lock.

84

Synchronization Primitives

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Sync. Primitive Scalable Fair Reentrant Sleeps

mutex OS dependent OS dependent No Yes

spin_mutex No No No No

queuing_mutex Yes Yes No No

spin_rw_mutex No No No No

queuing_rw_mutex Yes Yes No No

recursive_mutex OS dependent OS dependent Yes Yes

85

Properties

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

86

Example: scoped_lock

If an exception occurs within the protected code block the
destructor will automatically release the lock if it was acquired,
avoiding a dead-lock

tbb::parallel_for(0, data_size,
[=](int i) {

data_item = compute(i);
{ // critical section scope

spin_mutex::scoped_lock raii(lock);
serial_container.insert(data_item);

}
}

);

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

87

Example: Atomic Operation

#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>

tbb::atomic <int> sum;

int main () {
int a[n];
// initialize array here…

tbb::parallel_for (0, n, 1,
[=](int i) {

Foo (a[i]);
sum += a[i];

});
return 0;

}

This operation is performed atomically

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

88

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison
Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

When to use:
Native threads, OpenMP, TBB

89

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

90

Intel® TBB Intel® Cilk™ Plus OpenMP C++11
threads

Native
threads

Data decomposition support Yes Yes Yes No No

Task level parallelism Yes Yes Yes No No

Loop based parallelism Yes Yes Yes No No

Complex parallel patterns Yes No No No No

Scalable nested parallelism Yes Yes No No No

Efficient load balancing Yes Yes Yes No No

Affinity support No * No Yes No Yes

Equal-size (static) work distribution No No Yes No No

Concurrent data structures Yes No No No No

Scalable memory allocator Yes No No No No

Portable atomic operations Yes No Yes Yes No

Synchronization (spinning/blocking) Yes/Yes No/No Yes/No* No*/Yes Yes/Yes

Compiler support is not required Yes No No No Yes

Vector parallelism No Yes Yes No No

Co-processors or accelerators Yes Yes Yes No No

Cross OS support Yes Yes Yes Yes No

C / C++ / Fortran C++ C/C++ C/C++/
Fortran

C++ C/C++/
Fortran

*Available via design pattern

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Intel® Threading Building Blocks and
OpenMP Both Have Niches

Use OpenMP if...

• Code is C, Fortran, (or C++ that looks like C)

• Parallelism is primarily for bounded loops over built-in types

• Minimal syntactic changes are desired

Use Intel® Threading Building Blocks if..

• Must use a compiler without OpenMP support

• Have highly object-oriented or templated C++ code

• Need concurrent data structures

• Need to go beyond loop-based parallelism

• Make heavy use of C++ user-defined types

91

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Use Native Threads when

You already have a code written using them.

But, consider using TBB components

– Locks, atomics

– Data structures

– Scalable allocator

They provide performance and portability and can be
introduced incrementally

92

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Desktops

Tablets

Smartphones

Notebooks

Netbooks

Embedded

Clusters

Workstations

Servers

Cloud/Data Centers Coprocessors

Intel® TBB in the Computing Spectrum

MPI

OpenMP

Intel® TBB

93

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Agenda

94

Introduction

Intel® Threading Building Blocks overview

Tasks concept

Generic parallel algorithms

Task-based Programming

Performance Tuning

Parallel pipeline

Concurrent Containers

Scalable memory allocator

Synchronization Primitives

Parallel models comparison

Summary

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

95

What’s New
Intel® Threading Building Blocks 4.3

New Flow Graph Designer tool (currently in Alpha)

Visualize graph execution flow that allows better understanding of how
Intel® TBB flow graph works.

Available today on http://whatif.intel.com

Feature Benefits

Memory Allocator Improvements
Improved tbbmalloc – increases performance and scalability
for threaded applications

Improved Intel® TSX Support
Applications that use read-write locks can take additional
advantage of Intel TSX via tbb::speculative_spin_rw_mutex

Improved C++ 11 support Improved compatibility with C++ 11 standard.

Tasks arenas
Improved control over workload isolation and the degree of
concurrency with new class tbb::task_arena

Latest and Future Intel® Architecture
Support

Supports1 latest Intel® Architecture. Future proof with the
next generation.

1See Intel® TBB release notes for hardware support matrix

http://whatif.intel.com

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

96

Resources
Intel® Threading Building Blocks (Intel® TBB)

The Open-Source Community Site:
www.threadingbuildingblocks.org

Commercial product page:

https://software.intel.com/en-us/intel-tbb

Commercially available with Intel® Parallel Studio XE 2015:
https://software.intel.com/en-us/intel-parallel-studio-xe

Licensing questions

http://www.threadingbuildingblocks.org/licensing

http://www.threadingbuildingblocks.org/
https://software.intel.com/en-us/intel-tbb
https://software.intel.com/en-us/intel-parallel-studio-xe
http://www.threadingbuildingblocks.org/licensing

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Easy to use

Produces software that is safe

Makes my code go faster and scale

Co-exists with other programs

97

A Good Parallel Programming Model

Thank you

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2014, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

99

Backup

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

class ThreadPinner: public

tbb::task_scheduler_observer {

public:

void on_scheduler_entry(bool /**/) {

HANDLE hCurThread = GetCurrentThread();

SetThreadAffinityMask(hCurThread,

compute_mask(hCurThread));

}

void on_scheduler_exit(bool /**/) {}

private:

DWORD_PTR compute_mask(HANDLE hThread) {

return (DWORD_PTR)1;

}

};

102

Example: Task Scheduler Observer

int main(int argc, char* argv[])

{

task_scheduler_init init;

ThreadPinner tp;

tp.observe();

parallel_for(blocked_range<size_t>(0, N),

[](blocked_range<size_t> &r) {

for (size_t i = r.begin();

i < r.end(); ++i) do_work(i);

}, auto_partitioner());

return 0;

}

* Note: the above code is specific for Windows *. However, it’s similar when using Pthreads.

