
Intel Libraries
Intel MKL, Intel DAAL, and Intel TBB

Intel High Performance and Throughput Computing (EMEA)
Hans Pabst, July 9th 2015

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Motivation

How and where to optimize?

1. Appropriate algorithm

2. Performance Library

3. Multicore

4. SIMD

Delivered Values

 Easy access to high perf.

 Rich functionality

 Support

for (int i = 0; i < M; ++i) {

for (int j = 0; j < N; ++j) {

c[i*K+j] = 0;

for (int k = 0; k < K; ++k) {

c[i*K+j] += a[i*N+k]

* b[k*K+j];

}

}

}

Performance
Library

2

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Math Kernel Library
Intel® MKL

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Math Kernel Library (Intel® MKL)

Random Number Gen.

• Congruential

• Wichmann-Hill

• Mersenne Twister

• Sobol

• Neiderreiter

• Non-deterministic

Summary Statistics

• Kurtosis

• Variation coefficient

• Quantiles

• Order statistics

• Min/max

• Variance-covariance

Data Fitting

• Spline-based

• Interpolation

• Cell search

Linear Algebra

• BLAS, Sparse BLAS

• LAPACK solvers

• Sparse Solvers (DSS, PARADISO)

• Iterative solver (RCI)

• ScaLAPACK, PBLAS

Fast Fourier Transforms

• Multidimensional

• FFTW interfaces

• Cluster FFT

• Trig. Transforms

• Poisson solver

• Convolution via VSL

Vector Math

• Trigonometric

• Hyperbolic

• Exponential, Logarithmic

• Power / Root

4

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Release Notes (good source of what’s new)

https://software.intel.com/en-us/articles/intel-mkl-113-release-notes

https://software.intel.com/en-us/articles/intel-mkl-112-release-notes

https://software.intel.com/en-us/articles/intel-mkl-111-release-notes

https://software.intel.com/en-us/articles/intel-mkl-110-release-notes

Selection of What’s New

Optimizations for latest ISAs and extensions: Intel® Xeon Phi™ Coprocessor
(native/offload, and auto-offload), Intel® AVX2, Intel® AVX-512, etc.

Conditional Numerical Reproducibility (CNR), Verbose Mode, Small Matrix
Multiplication “inlining”, Cluster Sparse Solver (PARDISO)

Composability with TBB, new/complementary handle based SpBLAS API,
additional RNG algorithms, new C-only documentation, etc.

Intel® MKL: What’s New in Version 11.x?

5

http://software.intel.com/en-us/articles/intel-mkl-111-release-notes
http://software.intel.com/en-us/articles/intel-mkl-111-release-notes
http://software.intel.com/en-us/articles/intel-mkl-111-release-notes
https://software.intel.com/en-us/articles/intel-mkl-110-release-notes

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® MKL: Documentation

Getting Started

https://software.intel.com/en-us/articles/intel-mkl-113-getting-started

Reference Manual

https://software.intel.com/en-us/mkl_11.2_ref

User’s Guide

https://software.intel.com/en-us/mkl_11.2_ug_lin

https://software.intel.com/en-us/mkl_11.2_ug_win

https://software.intel.com/en-us/mkl_11.2_ug_osx

6

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Data Analytics Acceleration Library
Intel® DAAL

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Data Analytics Acceleration Library

An industry leading end-to-end IA-based data analytics acceleration library of
fundamental algorithms covering all data analysis stages.

(De-)Compression
Outlier detection

PCA
Statistical moments
Var-Covar matrix
Matrix
decompositions
Apriori
K-Means Clustering
EM for GMM

Linear regression
Decision trees
Naïve Bayes
Multi-Class SVM
Boosting

Pre-processing Transformation Analysis Modeling Decision Making

S
ci

e
n

ti
fi

c/
E

n
g

in
e

e
ri

n
g

W
e

b
/S

o
ci

a
l

B
u

si
n

e
ss

Validation

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

It is … It is not …

a performance library with C++ and Java APIs
optimized for Intel architectures.

a programming environment or a cluster
computing framework (like MATLAB, R, or
Hadoop).

a collection of common building blocks for
constructing high-end solutions in all stages of
a data analytics project.

a black-box solution to tackle domain specific
analytics needs.

abstracted from communication layers and
data sources, to be easily integrated into
different analytics platforms.

a toolkit or plug-in tied to a particular big data
platform.

boosting performance of critical algorithms
hence reducing time-to-value of your big data
projects.

promoting fancy algorithms as the silver bullet
for all you big data needs.

Intel DAAL: What Is and Isn’t?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Connects to physical data (e.g. f iles,

ODBC, etc.)

 Streams data into memory

 Transforms raw data into numeric

representat ion of supported layout

(Numeric Table)

 Performs f iltering (out lier

detect ion)

 Computes basic counters

 Streams in-memory data to

algorithm by blocks to

improve data locality

 Converts variety of numeric

formats into smaller set of

numeric formats for ef fect ive

vectorizat ion

 Transforms Numeric Table

layout into layout which is the

most eff icient for a given

Algorithm

Compression
Engine

Serialization and
Compression Engine

 Performs data processing

Intel DAAL: Typical Work Flow

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Tasks: Raw data acquisition, filtering, conversion.

Algorithms for data mining and machine learning.

Computation modes: batch, distributed, streaming.

Common tasks: compute, merge, finalizeMerge, finalizeStream.

Intel DAAL: Data Management and
Data Processing

Data Processing

Optimized analytics building blocks for all data analysis
stages, from data acquisition to data mining and machine

learning.

Data Modeling

Data structures for model representation, and operations to
derive model-based predictions and conclusions.

Data Management

Interfaces for data representation and access. Connectors to a
variety of data sources and data formats, such HDFS, SQL,

CSV, ARFF, and user-defined data source/format.

Data Sources
Numeric
Tables

Outliers Detection

Compression /
Decompression

Serialization / Deserialization

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel DAAL: Algorithms for Data
Transformation and Analysis

Basic statistics for
datasets

Statistical
moments

Variance-
Covariance

matrix

Correlation

Cosine
distance

Correlation
distance

Matrix factorizations:

SVD

QR

Cholesky

Dimensionality
reduction

PCA

Outlier detection

Association rule
mining (Apriori)

Univariate

Multivariat
e

Algorithms support streaming and distributed processing in the current release.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Threading Building Blocks
Intel® TBB

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® Threading Building Blocks (Intel® TBB)

What

 Widely used C++ template library for task parallelism.

 Features

 Parallel algorithms and data structures.

 Threads and synchronization primitives.

 Scalable memory allocation and task scheduling.

Benefit

 Rich feature set for general purpose parallelism.

 Available as an open source and a commercial license.

 Supports C++, Windows*, Linux*, OS X*, other OS’s.

 Commercial support for Intel® Atom™, Core™, Xeon® processors, and for Intel®
Xeon Phi™ coprocessors

Also available as open source at
threadingbuildingblocks.org

Simplify Parallelism with a Scalable Parallel Model

https://software.intel.com/intel-tbb

16

https://software.intel.com/en-us/intel-tbb

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

 Parallel pattern: commonly occurring combination of
task distribution and data access

 A small number of patterns can support a wide range of
applications

 Identify and use parallel patterns
Examples: reduction, or pipeline

TBB has primitives and algorithms for most common
patterns – don’t reinvent a wheel

17

Design patterns

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Parallel Patterns

18

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

19

Generic Parallel
Algorithms

Efficient scalable way to
exploit the power of
multi-core without
having to start from

scratch.

Concurrent Containers

Concurrent access, and a scalable alternative to
containers that are externally locked for thread-

safety

Thread Local Storage

Efficient
implementation for

unlimited number of
thread-local

variables

Task Scheduler

Sophisticated work scheduling engine that
empowers parallel algorithms and the flow graph

Threads

OS API
wrappers

Timers and
Exceptions

Thread-safe
timers and
exception

classes

Memory Allocation

Scalable memory manager and false-sharing free allocators

Synchronization Primitives

Atomic operations, a variety of mutexes with
different properties, condition variables

Flow Graph

A set of classes to
express parallelism as

a graph of compute
dependencies and/or

data flow

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task
scheduling

Rich Feature Set
for Parallelism

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

20

Generic Parallel
Algorithms

• parallel_for
• parallel_reduce
• parallel_for_each
• parallel_do
• parallel_invoke
• parallel_sort
• parallel_deterministic_reduce
• parallel_scan
• parallel_pipeline
• pipeline

Concurrent Containers

• concurrent_unordered_map
• concurrent_unordered_multimap
• concurrent_unordered_set
• concurrent_unordered_multiset
• concurrent_hash_map

• concurrent_queue
• concurrent_bounded_queue
• concurrent_priority_queue
• concurrent_vector
• concurrent_lru_cache

Thread Local Storage

• combinable
• enumerable_thread_specific

Task Scheduler

• task
• task_group
• structured_task_group
• task_group_context

• task_scheduler_init
• task_scheduler_observer
• task_arena

Threads
& timers

Thread

tick_count

Memory Allocation

• tbb_allocator
• scalable_allocator

• cache_aligned_allocator
• zero_allocator

• aligned_space
• memory_pool (preview)

Synchronization Primitives

• atomic
• mutex
• recursive_mutex
• spin_mutex
• spin_rw_mutex
• speculative_spin_mutex
• speculative_spin_rw_mutex

• queuing_mutex
• queuing_rw_mutex
• null_mutex
• null_rw_mutex
• reader_writer_lock
• critical_section
• condition_variable
• aggregator (preview)

Flow Graph

• graph
• continue_node
• source_node
• function_node
• multifunction_node
• overwrite_node
• write_once_node
• limiter_node
• buffer_node
• queue_node
• priority_queue_node
• sequencer_node
• broadcast_node
• join_node
• split_node
• indexer_node

Parallel algorithms and data structures

Threads and synchronization

Memory allocation and task
scheduling

Features and Functions List

Exceptions

• tbb_exception
• captured_exception
• movable_exception

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Structure used to organize parallel computations

21

Algorithm Structure Design Space

Pipeline

Organized by flow
of data

Linear? Recursive?

Organized by tasks

Linear? Recursive?

Organized by data

Recursive
Data

Regular? Irregular?

Task
Parallelism

Geometric
Decomposition

Divide and
Conquer

Event-based
Coordination

How is the computation structured?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Structure used to organize parallel computations

22

Algorithm Structure Design Space

Pipeline

Organized by flow
of data

Linear? Recursive?

Organized by tasks

Linear? Recursive?

Organized by data

Recursive
Data

Regular? Irregular?

Task
Parallelism

Geometric
Decomposition

Divide and
Conquer

Event-based
Coordination

How is the computation structured?

parallel_for tbb::task parallel_pipeline

flow::graphtask_group parallel_invoke

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

23

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Backup
Intel MKL Code Samples

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel Compiler: scalar/vector math fn., and pseudo Intrinsics

• IMF: Intel Math Functions (scalar)
-fimf-precision=<high|medium|low>

Default/usually: scalar/high and vect./medium
high: ~0.55 ulps, medium: ~2 ulps (but < 4 ulps)

-fimf-arch-consistency=<true|false>

Default is “false” even with –fp-model=precise

Not available across 32-bit / 64-bit

• SVML: Short Vector Math Functions (pseudo Intrinsics)
General form: _mm*_svml_[function]_p[s|d]

e.g., _mm_svml_round_ps, or _mm256_erfc_pd

Intel® MKL: vectorized and parallelized math functions

• VML: optimized for throughput – three accuracy/performance levels

26

Intel® MKL: Intel® Compiler Math Library

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Intel® MKL: Vector Math Library (VML)

27

High Accuracy (HA)

 Correct rounding (>99%)

 Behaves according to C99

 Slowest, default mode

Low Accuracy (LA)

 At most 2 lsb incorrect

 Behaves according to C99

 30-50% faster than HA

Enhanced Performance (EP)

 ~1/2 incorrect bits

 30-50% faster than LA

#include <mkl_vml.h>

int main()

{

double in[1000];

double out[1000];

vmlSetMode(VML_EP)

vdExp(1000, in, out);

}

* http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/vml/functions/_performanceall.html
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/vml/functions/_accuracyall.html
http://software.intel.com/sites/products/documentation/doclib/mkl_sa/11/vml/functions/exp.html

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

using namespace std;

vector<float> a(arows * acols);
vector<float> b(acols * bcols);
vector<float> c(arows * bcols);
const float alpha = 1, beta = 0;

transform(a.begin(), a.end(), a.begin(), [](float /*dummy*/)
{ return static_cast<float>(rand()); });

transform(b.begin(), b.end(), b.begin(), [](float /*dummy*/)
{ return static_cast<float>(rand()); });

transform(c.begin(), c.end(), c.begin(), [](float /*dummy*/)
{ return static_cast<float>(rand()); });

cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans,
arows, bcols, acols, alpha, &a[0], acols, &b[0],
bcols, beta, &c[0], bcols);

28

Intel® MKL: SGEMM (CBLAS)

* No overloaded functions (C interface). Note, CBLAS vs. BLAS is to get row- vs. col-major storage.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

[e5-2670] $ source /opt/intel/composerxe/bin/compilervars.sh intel64

[e5-2670] $ icc -O2 -mkl dgemm.c -o dgemm
[e5-2670] $ env KMP_AFFINITY=compact,1 ./dgemm

29

Intel® MKL: Setting Affinity (OpenMP*)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Several C++ template libraries available*

 Armadillo, Eigen, etc.

Typical criterions when deciding

 Use of expression templates to enable lazy evaluation and to avoid
intermediate temporaries

 Data containers able to allocate aligned buffers and able to wrap existing
memory layouts (user-allocated)

 Simple configuration (preprocessor symbols preferred) and compiler-
agnostic (OS portable)

7/10/2015
30

Intel® MKL: C++ Math Libraries (Wrapper)

* http://software.intel.com/en-us/articles/intelr-mkl-and-c-template-libraries

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

template<typename T, typename U> void gemm(T* result, const T* a, const T* b,
U arows, U acols, U bcols, T alpha = 1, T beta = 0)

{
struct local {
const char atrans = 'T', btrans = 'T';

static void gemm(float* result, const float* a, const float* b,
MKL_INT arows, MKL_INT acols, MKL_INT bcols, float alpha, float beta)

{
sgemm(&atrans, &btrans, &arows, &bcols, &acols, &alpha, a, &acols, b,

&bcols, &beta, result, &bcols);
}

static void gemm(double* result, const double* a, const double* b,
MKL_INT arows, MKL_INT acols, MKL_INT bcols, double alpha, double beta)

{
dgemm(&atrans, &btrans, &arows, &bcols, &acols, &alpha, a, &acols, b,

&bcols, &beta, result, &bcols);
}

};

local::gemm(result, a, b,
static_cast<MKL_INT>(arows),
static_cast<MKL_INT>(acols),
static_cast<MKL_INT>(bcols),
alpha, beta);

}

31

Intel® MKL: C++ Wrapper Code

* Note, the Intel MKL C/BLAS interfaces are const-correct. Further, MKL_INT depends on LP64 vs. ILP64.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

void process_signal_mkl(size_t size,
const float xin[], const float yin[],
float xout[], float yout[])

{
static MKL_INT n = static_cast<MKL_INT>(size);
static VSLCorrTaskPtr task = 0;

if (n != size || 0 == task) {
vslCorrDeleteTask(&task);
mkl_size = static_cast<MKL_INT>(size);
vslsCorrNewTask1D(&task, VSL_CORR_MODE_AUTO,

n, n, n);
}
std::copy(xin, xin + size, xout);
vslsCorrExec1D(task, yin, 1, yin, 1, yout, 1);

}

32

Intel® MKL: Vector Statistics Library (VSL)

-400

-300

-200

-100

0

100

200

300

0 5 10 15 20

Result Signal

-

5

-

4

-

3

-

2

-

1
0
1
2
3
4
5

0 5 10 15 20

Pure

Signal
Nois

y

Sign

al

