
LIBXSMM
Library for small matrix multiplications.

Intel High Performance and Throughput Computing (EMEA)
Hans Pabst, July 7th 2015

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Library for small matrix-matrix multiplications targeting Intel
Architecture (x86). The library generates code for the following
instruction set extensions: Intel SSE3, Intel AVX, Intel AVX2, IMCI
(KNCni) for Intel Xeon Phi coprocessors ("KNC"), and Intel AVX-
512 as found in the Intel Xeon Phi processor family ("KNL") and
future Intel Xeon processors.

Historically the library was solely targeting the Intel Many
Integrated Core Architecture "MIC") using intrinsic functions,
however meanwhile optimized assembly code is generated for
the fore mentioned instruction set extensions.

2

Abstract

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Motivation

“Improving Performance for
Small Size Problems*.”
Make informed tradeoffs and gain performance

− Generating specialized code “everything is hard/hand-coded”

− Highly optimized code “assembly, Intrinsics, and tuned code”

3

* Actual problem size might be large when processing batches of small-sized problems.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

DIRECT CALL feature: Intel MKL allows inlining code for very
small problem sizes as well as calling the low-level library
implementation directly for small problem sizes. This feature
may improve performance because of skipping error checks and
calls to intermediate library layers.

 Works for Intel and non-Intel compilers

 Works for C/C++ and Fortran

 Compile-time decision

4

Intel Math Kernel Library (Intel MKL)

Improved performance for small problem sizes.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

BLAS-conformant error checking vs. low overhead

 No error checking or ‘xerbla’ callback

Code dispatch vs. compile-time decision

 AVX, AVX2, no MIC code path

Subset of functions LAPACK/BLAS3

 xGEMM

5

Intel MKL 11.2: DIRECT CALL
Tradeoffs and Limitations

Make informed tradeoffs and gain performance.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Quickly check if an application performs small matrix
multiplications, and estimate the performance impact.

1. Set the environment variable MKL_VERBOSE=1

2. Select a representative workload

3. Run with redirected standard output

Example: evaluate occurrences of DGEMM for M, N, and K

$ env MKL_VERBOSE=1 ./myapplication > verbose.txt

$ grep -a "MKL_VERBOSE DGEMM" verbose.txt | cut -d, -f3-5

6

Intel MKL 11.2: VERBOSE Mode

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM
Library for small matrix multiplications.

7

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Interface (C API)

Simplified interface for matrix-matrix multiplications

• cm x n = cm x n + am x k * bk x n (no full xGEMM)

Dispatched and non-dispatched code paths

• Specialized/generated, or inlined C code

• LAPACK/BLAS (fallback code path)

• Amortized dispatch (“zero” overhead)

License

• Open Source Software (BSD 3-clause license)*

8

LIBXSMM

* https://github.com/hfp/libxsmm

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

/** If non-zero function pointer is returned, call (*function)(M, N, K). */
libxsmm_smm_function libxsmm_smm_dispatch(int m, int n, int k);
libxsmm_dmm_function libxsmm_dmm_dispatch(int m, int n, int k);

/** Automatically dispatched matrix-matrix multiplication. */
void libxsmm_smm(int m, int n, int k,

const float* a, const float* b,
float* c);

void libxsmm_dmm(int m, int n, int k,
const double* a, const double* b,
double* c);

/** Non-dispatched matrix-matrix multiplication using inline code. */
void libxsmm_simm(int m, int n, int k,

const float* a, const float* b,
float* c);

void libxsmm_dimm(int m, int n, int k,
const double* a, const double* b,
double* c);

/** Matrix-matrix multiplication using BLAS. */
void libxsmm_sblasmm(int m, int n, int k,

const float* a, const float* b,
float* c);

void libxsmm_dblasmm(int m, int n, int k,
const double* a, const double* b,
double* c);

9

LIBXSMM: Interface (C API)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

#include <libxsmm.h>

int main()
{
const int m = 23, n = 23, k = 23; /* some problem size */
double a[m*k], b[k*n], c[m*n]; /* initialize later */
libxsmm_dmm_function xmm = NULL; /* function pointer */

libxsmm_mm(m, n, k, a, b, c); /* auto-dispatched */
libxsmm_imm(m, n, k, a, b, c); /* inlined */
libxsmm_blasmm(m, n, k, a, b, c); /* BLAS */
libxsmm_dmm_23_23_23(a, b, c); /* specialized */

xmm = libxsmm_dmm_dispatch(23, 23, 23);
if (xmm) { /* specialized */
for (int i = 0; i < some; ++i) {
xmm(a, b, c); /* amortized */

}
}

}

10

LIBXSMM: Getting Started

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Usual mechanics

$ make ; make clean

$ make realclean

Row major (default), or column-major

$ make ROW_MAJOR=0

Specialization

$ make M="2 4" N="1" K="$(echo $(seq 2 5))"

Generates the following index set:
(2,1,2), (2,1,3), (2,1,4), (2,1,5),

(4,1,2), (4,1,3), (4,1,4), (4,1,5)

11

LIBXSMM: Getting Started (cont.)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Specialization using MNK variable (instead of M, N, and K)

$ make MNK="2 3, 23"

Generates the following index set:
(2,2,2), (2,2,3), (2,3,2), (2,3,3),

(3,2,2), (3,2,3), (3,3,2), (3,3,3), (23,23,23)

Background

• Takes a list of (grouped) indices (comma separated)

• Combines each group into all possible triplets

12

LIBXSMM: Flexible Specialization

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Automatic code dispatch (levels)

1. Below threshold (M x N x K <= LIBXSMM_MAX_MNK)

a) Specialized routine call (if available)

b) Inlined code, or MKL DIRECT CALL

2. Fallback code path (otherwise)

c) LAPACK/BLAS call

Adjusting the threshold (LIBXSMM_MAX_MNK)

$ make THRESHOLD=$((60 * 60 * 60))

Adjusting the dispatch mechanism

$ make SPARSITY=2

13

LIBXSMM: Automatic Code Dispatch

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Supports any LAPACK/BLAS, optionally MKL DIRECT CALL

• Dispatch levels are avail. separately (customized dispatch)

libxsmm_?imm

libxsmm_?blasmm

• Amortizing dispatch cost (multiple calls of same M, N, K)

libxsmm_?mm_dispatch

• Specific kernel access e.g.,

libxsmm_dmm_4_4_4

14

LIBXSMM: Code Paths (Dispatch)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Generate specific code path: AVX=1|2|3 or SSE=1

• Allows to speedup code generation when building the library; by default
all code paths supported by the code generator are generated

• Allows to cross-build the library for a specific ISA extension; by default the
compilation flag selects the actual code path according to -march=native

Generate aligned store instructions: ALIGNED_STORES=1

• Call side code must be prepared for round LDC up to be aligned

Use of static information: LIBXSMM_* macros

• Allows for e.g., loop hints (LIBXSMM_PRAGMA_LOOP_COUNT)

15

LIBXSMM: Compile-time Tuning

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

ADVANCED: directly invoking the assembly code generator

$ make generator

$ bin/generator

Generate Intrinsic code path: GENASM=0

• Usually not beneficial compared to default assembly code path

• Available for Intel Xeon Phi coprocessor and Intel AVX-512

16

LIBXSMM: Compile-time Tuning (cont.)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Highly optimized assembly code generation*

• SSE3, AVX, AVX2, IMCI (KNCni), and AVX-512

• AVX-512 code quality

• Maximizes number of immediate operands

• Limits Instructions width to 16 Byte/cycle

High level code optimizations

• Implicitly aligned leading dimension (LDC) – allows aligned store instr.

• Aligned load instructions (not yet exposed in the interface)

• Sophisticated data prefetch (not yet exposed in the interf.)

17

LIBXSMM: Implementation

* There is also a non-default Intrinsics code generation targeting IMCI/KNCni and AVX-512

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

samples/smm: blas, dispatched, inlined, and specialized

• Multiply a series of A and B matrices into a series of C matrices

STREAMing A and B from memory, accumulates C likely in LLC*

• Multiply two matrices into a destination matrix

Likely operates entirely within the LLC*

samples/cp2k: more complex code sample

• STREAMing A and B (memory), accumulates C (likely in LLC*)

• Flushes C from time to time (memory)

18

LIBXSMM: Code Samples

* If the problem size fits into the Last-Level Cache (LLC)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: CP2K Kernels
Background

19

• Based on LIBXSMM’s “cp2k”
code sample

• Approximates CP2K core functions

• Not (yet) exactly modeling CP2K
e.g., no index array used

• CK2K performs a mixture of
“computation” and “streaming”

• Memory streaming of matrix
operands using unaligned loads

• Result accumulation using aligned
store instructions (thread local)

• Write-back of thread-local results
into (co)processor’s global memory

• Minor synchronization overhead
(either “FP atomics” or set of locks)

#!/bin/bash

make ROW_MAJOR=0 \
ALIGNED_STORES=1 \
MNK=\
"23,"\
"6,"\
"14 16 29,"\
"14 32 29,"\
"5 32 13 24 26,"\
"9 32 22,"\
"32,"\
"64,"\
"78,"\
"16 29 55,"\
"32 29 55,"\
"12,"\
"13 26 28 32 45"

* The Shell script builds LIBXSMM using a list of grouped indices which are combined into all possible triplets.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: CP2K Kernels
Background

20

• Based on LIBXSMM’s “cp2k”
code sample

• Approximates CP2K core functions

• Not (yet) exactly modeling CP2K
e.g., no index array used

• CK2K performs a mixture of
“computation” and “streaming”

• Memory streaming of matrix
operands using unaligned loads

• Result accumulation using aligned
store instructions (thread local)

• Write-back of thread-local results
into (co)processor’s global memory

• Minor synchronization overhead
(either “FP atomics” or set of locks)

#!/bin/bash

make ROW_MAJOR=0 \
ALIGNED_STORES=1 \
MNK=\
"23,"\
"6,"\
"14 16 29,"\
"14 32 29,"\
"5 32 13 24 26,"\
"9 32 22,"\
"32,"\
"64,"\
"78,"\
"16 29 55,"\
"32 29 55,"\
"12,"\
"13 26 28 32 45"

* The Shell script builds LIBXSMM using a list of grouped indices which are combined into all possible triplets.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM Performance Results
Intel Xeon Phi 7120 Coprocessor (“KNC”)

21

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
Parameter Space Exploration (subset of 328 kernels)

22

* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C using IMCI/KNCni

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
Parameter Space Exploration (subset of 328 kernels)

23

* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

We’ve evaluated a variety of problem sizes
(kernels) rather than a single instance!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
K-Average over MN-Parameter Space (328 kernels)

24

* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
K-Average over MN-Parameter Space (328 kernels)

25

* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

Diagram shows, that performance is rather
good across all kernels of interest (as
opposed to showing a single cherry-picked
problem instance; all kernels are tuned).

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
Average per Bin of Problem Size (328 kernels)

26

* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
Average per Bin of Problem Size (328 kernels)

27

* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

In addition to the K-Average over the MN-
Parameter Space (previously shown heat
map), we’ve binned into three categories.
Diagram shows that our averaged perf. is
not only raised due to larger problems.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
CDF – Cumulative Distribution Function (328 kernels)

28

* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
CDF – Cumulative Distribution Function (328 kernels)

29

* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

This diagram does NOT allow to identify
any particular kernel. Moreover at any point
of the x-axis, the “Compute Performance”
and the “Memory Bandwidth” graph do
NOT necessarily belong to the same kernel!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM Performance Results
Intel Xeon E5-2699v3 (“Haswell”)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
Parameter Space Exploration (subset of 328 kernels)

36

* Intel Xeon E5-2699v3 @ 2.3 GHz, 72 threads with 2t/C running AVX2 code

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
K-Average over MN-Parameter Space (328 kernels)

37

* Intel Xeon E5-2699v3 @ 2.3 GHz, 72 threads with 2t/C running AVX2 code

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
Average per Bin of Problem Size (328 kernels)

38

* Intel Xeon E5-2699v3 @ 2.3 GHz, 72 threads with 2t/C running AVX2 code

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
CDF – Cumulative Distribution Function (328 kernels)

39

* Intel Xeon E5-2699v3 @ 2.3 GHz, 72 threads with 2t/C running AVX2 code

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

• Full xGEMM interface*, and native FORTRAN interface

• Just-in-Time (JIT) runtime dynamic code generation

• API supporting sparse matrices and other cases

40

LIBXSMM: Roadmap

* Optionally intercepting xGEMM calls (LD_PRELOAD).

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

[1] http://cp2k.org/: Open Source Molecular Dynamics
application which is able to use LIBXSMM; see
https://github.com/cp2k/cp2k/tree/intel.

[2] http://www.seissol.org/: SeisSol is one of the leading codes
for earthquake scenarios, in particular for simulating dynamic
rupture processes. LIBXSMM provides highly optimized assembly
kernels which form the computational back-bone of SeisSol; see
https://github.com/TUM-I5/seissol_kernels/tree/lts_compressed.

41

LIBXSMM: Applications

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM home page

https://github.com/hfp/libxsmm

Related material

[1] Code generator for matrix-matrix multiplications
https://github.com/TUM-I5/GemmCodeGenerator

[2] Performance engineering and code tuning (video/slide series)
http://user.cscs.ch/support/tutorials/2014/node_level_performance_engineering_15_16_ma
y_2014/index.html

[3] Optimized matrix transposes
http://research.colfaxinternational.com/post/2013/04/25/Transposition-Xeon-Phi.aspx

Intel collaterals

[4] Xeon Phi Applications and Solutions Catalog
http://software.intel.com/xeonphicatalog

[5] 3rd Party Tools and Libraries
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-libraries-available-
with-support-for-intelr-xeon-phitm

42

References

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR
OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO
LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS
INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE,
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer
systems, components, software, operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you in fully evaluating your
contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2015, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel
logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

43

