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Library for small matrix-matrix multiplications targeting Intel
Architecture (x86). The library generates code for the following
instruction set extensions: Intel SSE3, Intel AVX, Intel AVX2, IMCI
(KNCni) for Intel Xeon Phi coprocessors ("KNC"), and Intel AVX-
512 as found in the Intel Xeon Phi processor family ("KNL") and
future Intel Xeon processors.

Historically the library was solely targeting the Intel Many
Integrated Core Architecture "MIC") using intrinsic functions,
however meanwhile optimized assembly code is generated for
the fore mentioned instruction set extensions.
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Abstract
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Motivation

“Improving Performance for 
Small Size Problems*.”
Make informed tradeoffs and gain performance

− Generating specialized code “everything is hard/hand-coded”

− Highly optimized code “assembly, Intrinsics, and tuned code”
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* Actual problem size might be large when processing batches of small-sized problems.
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DIRECT CALL feature: Intel MKL allows inlining code for very 
small problem sizes as well as calling the low-level library 
implementation directly for small problem sizes. This feature 
may improve performance because of skipping error checks and 
calls to intermediate library layers.

 Works for Intel and non-Intel compilers

 Works for C/C++ and Fortran

 Compile-time decision
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Intel Math Kernel Library (Intel MKL)

Improved performance for small problem sizes.
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BLAS-conformant error checking vs. low overhead

 No error checking or ‘xerbla’ callback

Code dispatch vs. compile-time decision

 AVX, AVX2, no MIC code path

Subset of functions LAPACK/BLAS3

 xGEMM
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Intel MKL 11.2: DIRECT CALL
Tradeoffs and Limitations

Make informed tradeoffs and gain performance.
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Quickly check if an application performs small matrix 
multiplications, and estimate the performance impact.

1. Set the environment variable MKL_VERBOSE=1

2. Select a representative workload

3. Run with redirected standard output

Example: evaluate occurrences of DGEMM for M, N, and K

$ env MKL_VERBOSE=1 ./myapplication > verbose.txt

$ grep -a "MKL_VERBOSE DGEMM" verbose.txt | cut -d, -f3-5
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Intel MKL 11.2: VERBOSE Mode
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LIBXSMM
Library for small matrix multiplications.
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Interface (C API)

Simplified interface for matrix-matrix multiplications

• cm x n = cm x n + am x k * bk x n (no full xGEMM)

Dispatched and non-dispatched code paths

• Specialized/generated, or inlined C code

• LAPACK/BLAS (fallback code path)

• Amortized dispatch (“zero” overhead)

License

• Open Source Software (BSD 3-clause license)*
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LIBXSMM

* https://github.com/hfp/libxsmm
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/** If non-zero function pointer is returned, call (*function)(M, N, K). */
libxsmm_smm_function libxsmm_smm_dispatch(int m, int n, int k);
libxsmm_dmm_function libxsmm_dmm_dispatch(int m, int n, int k);

/** Automatically dispatched matrix-matrix multiplication. */
void libxsmm_smm(int m, int n, int k,

const float* a, const float* b,
float* c);

void libxsmm_dmm(int m, int n, int k,
const double* a, const double* b,
double* c);

/** Non-dispatched matrix-matrix multiplication using inline code. */
void libxsmm_simm(int m, int n, int k,

const float* a, const float* b,
float* c);

void libxsmm_dimm(int m, int n, int k,
const double* a, const double* b,
double* c);

/** Matrix-matrix multiplication using BLAS. */
void libxsmm_sblasmm(int m, int n, int k,

const float* a, const float* b,
float* c);

void libxsmm_dblasmm(int m, int n, int k,
const double* a, const double* b,
double* c);
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LIBXSMM: Interface (C API)



Copyright ©  2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

#include <libxsmm.h>

int main()
{
const int m = 23, n = 23, k = 23; /* some problem size */
double a[m*k], b[k*n], c[m*n]; /* initialize later */
libxsmm_dmm_function xmm = NULL; /* function pointer */

libxsmm_mm(m, n, k, a, b, c); /* auto-dispatched */
libxsmm_imm(m, n, k, a, b, c); /* inlined */
libxsmm_blasmm(m, n, k, a, b, c); /* BLAS */
libxsmm_dmm_23_23_23(a, b, c); /* specialized */

xmm = libxsmm_dmm_dispatch(23, 23, 23);
if (xmm) {                         /* specialized */
for (int i = 0; i < some; ++i) {
xmm(a, b, c); /* amortized */

}
}

}
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LIBXSMM: Getting Started
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Usual mechanics

$ make ; make clean

$ make realclean

Row major (default), or column-major

$ make ROW_MAJOR=0

Specialization

$ make M="2 4" N="1" K="$(echo $(seq 2 5))"

Generates the following index set:
(2,1,2), (2,1,3), (2,1,4), (2,1,5),

(4,1,2), (4,1,3), (4,1,4), (4,1,5)

11

LIBXSMM: Getting Started (cont.)
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Specialization using MNK variable (instead of M, N, and K)

$ make MNK="2 3, 23"

Generates the following index set:
(2,2,2), (2,2,3), (2,3,2), (2,3,3),

(3,2,2), (3,2,3), (3,3,2), (3,3,3), (23,23,23)

Background

• Takes a list of (grouped) indices (comma separated)

• Combines each group into all possible triplets
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LIBXSMM: Flexible Specialization
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Automatic code dispatch (levels)

1. Below threshold (M x N x K <= LIBXSMM_MAX_MNK)

a) Specialized routine call (if available)

b) Inlined code, or MKL DIRECT CALL

2. Fallback code path (otherwise)

c)     LAPACK/BLAS call

Adjusting the threshold (LIBXSMM_MAX_MNK)

$ make THRESHOLD=$((60 * 60 * 60))

Adjusting the dispatch mechanism

$ make SPARSITY=2
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LIBXSMM: Automatic Code Dispatch
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• Supports any LAPACK/BLAS, optionally MKL DIRECT CALL

• Dispatch levels are avail. separately (customized dispatch)

libxsmm_?imm

libxsmm_?blasmm

• Amortizing dispatch cost (multiple calls of same M, N, K)

libxsmm_?mm_dispatch

• Specific kernel access e.g.,

libxsmm_dmm_4_4_4
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LIBXSMM: Code Paths (Dispatch)
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Generate specific code path: AVX=1|2|3 or SSE=1

• Allows to speedup code generation when building the library; by default 
all code paths supported by the code generator are generated

• Allows to cross-build the library for a specific ISA extension; by default the 
compilation flag selects the actual code path according to -march=native

Generate aligned store instructions: ALIGNED_STORES=1

• Call side code must be prepared for round LDC up to be aligned

Use of static information: LIBXSMM_* macros

• Allows for e.g., loop hints (LIBXSMM_PRAGMA_LOOP_COUNT)
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LIBXSMM: Compile-time Tuning
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ADVANCED: directly invoking the assembly code generator

$ make generator

$ bin/generator

Generate Intrinsic code path: GENASM=0

• Usually not beneficial compared to default assembly code path

• Available for Intel Xeon Phi coprocessor and Intel AVX-512
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LIBXSMM: Compile-time Tuning (cont.)
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Highly optimized assembly code generation*

• SSE3, AVX, AVX2, IMCI (KNCni), and AVX-512

• AVX-512 code quality

• Maximizes number of immediate operands

• Limits Instructions width to 16 Byte/cycle

High level code optimizations

• Implicitly aligned leading dimension (LDC) – allows aligned store instr.

• Aligned load instructions (not yet exposed in the interface)

• Sophisticated data prefetch (not yet exposed in the interf.)
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LIBXSMM: Implementation

* There is also a non-default Intrinsics code generation targeting IMCI/KNCni and AVX-512
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samples/smm: blas, dispatched, inlined, and specialized

• Multiply a series of A and B matrices into a series of C matrices 

STREAMing A and B from memory, accumulates C likely in LLC*

• Multiply two matrices into a destination matrix

Likely operates entirely within the LLC*

samples/cp2k: more complex code sample

• STREAMing A and B (memory), accumulates C (likely in LLC*)

• Flushes C from time to time (memory)
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LIBXSMM: Code Samples

* If the problem size fits into the Last-Level Cache (LLC)
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LIBXSMM: CP2K Kernels
Background

19

• Based on LIBXSMM’s “cp2k” 
code sample

• Approximates CP2K core functions

• Not (yet) exactly modeling CP2K 
e.g., no index array used

• CK2K performs a mixture of 
“computation” and “streaming”

• Memory streaming of matrix 
operands using unaligned loads

• Result accumulation using aligned 
store instructions (thread local)

• Write-back of thread-local results 
into (co)processor’s global memory

• Minor synchronization overhead 
(either “FP atomics” or set of locks)

#!/bin/bash

make ROW_MAJOR=0 \
ALIGNED_STORES=1 \
MNK=\
"23,"\
"6,"\
"14 16 29,"\
"14 32 29,"\
"5 32 13 24 26,"\
"9 32 22,"\
"32,"\
"64,"\
"78,"\
"16 29 55,"\
"32 29 55,"\
"12,"\
"13 26 28 32 45"

* The Shell script builds LIBXSMM using a list of grouped indices which are combined into all possible triplets.



Copyright ©  2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: CP2K Kernels
Background
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• Based on LIBXSMM’s “cp2k” 
code sample

• Approximates CP2K core functions

• Not (yet) exactly modeling CP2K 
e.g., no index array used

• CK2K performs a mixture of 
“computation” and “streaming”

• Memory streaming of matrix 
operands using unaligned loads

• Result accumulation using aligned 
store instructions (thread local)

• Write-back of thread-local results 
into (co)processor’s global memory

• Minor synchronization overhead 
(either “FP atomics” or set of locks)

#!/bin/bash

make ROW_MAJOR=0 \
ALIGNED_STORES=1 \
MNK=\
"23,"\
"6,"\
"14 16 29,"\
"14 32 29,"\
"5 32 13 24 26,"\
"9 32 22,"\
"32,"\
"64,"\
"78,"\
"16 29 55,"\
"32 29 55,"\
"12,"\
"13 26 28 32 45"

* The Shell script builds LIBXSMM using a list of grouped indices which are combined into all possible triplets.
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LIBXSMM Performance Results
Intel Xeon Phi 7120 Coprocessor (“KNC”)
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LIBXSMM: Performance of CP2K Kernels
Parameter Space Exploration (subset of 328 kernels)
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* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C using IMCI/KNCni
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LIBXSMM: Performance of CP2K Kernels
Parameter Space Exploration (subset of 328 kernels)
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* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

We’ve evaluated a variety of problem sizes 
(kernels) rather than a single instance!
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LIBXSMM: Performance of CP2K Kernels
K-Average over MN-Parameter Space (328 kernels)
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* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code
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LIBXSMM: Performance of CP2K Kernels
K-Average over MN-Parameter Space (328 kernels)
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* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

Diagram shows, that performance is rather 
good across all kernels of interest (as 
opposed to showing a single cherry-picked 
problem instance; all kernels are tuned).
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LIBXSMM: Performance of CP2K Kernels
Average per Bin of Problem Size (328 kernels)
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* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code



Copyright ©  2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimization Notice

LIBXSMM: Performance of CP2K Kernels
Average per Bin of Problem Size (328 kernels)
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* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

In addition to the K-Average over the MN-
Parameter Space (previously shown heat 
map), we’ve binned into three categories. 
Diagram shows that our averaged perf. is 
not only raised due to larger problems.
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LIBXSMM: Performance of CP2K Kernels
CDF – Cumulative Distribution Function (328 kernels)

28

* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code
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LIBXSMM: Performance of CP2K Kernels
CDF – Cumulative Distribution Function (328 kernels)
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* Intel Xeon Phi 7120 Coprocessor @ 1.2 GHz, 16 GB GDDR5, 240 threads with 4t/C running IMCI/KNCni code

This diagram does NOT allow to identify
any particular kernel. Moreover at any point 
of the x-axis, the “Compute Performance” 
and the “Memory Bandwidth” graph do 
NOT necessarily belong to the same kernel!
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LIBXSMM Performance Results
Intel Xeon E5-2699v3 (“Haswell”)
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LIBXSMM: Performance of CP2K Kernels
Parameter Space Exploration (subset of 328 kernels)
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* Intel Xeon E5-2699v3 @ 2.3 GHz, 72 threads with 2t/C running AVX2 code
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LIBXSMM: Performance of CP2K Kernels
K-Average over MN-Parameter Space (328 kernels)
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* Intel Xeon E5-2699v3 @ 2.3 GHz, 72 threads with 2t/C running AVX2 code
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LIBXSMM: Performance of CP2K Kernels
Average per Bin of Problem Size (328 kernels)
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* Intel Xeon E5-2699v3 @ 2.3 GHz, 72 threads with 2t/C running AVX2 code
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LIBXSMM: Performance of CP2K Kernels
CDF – Cumulative Distribution Function (328 kernels)
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* Intel Xeon E5-2699v3 @ 2.3 GHz, 72 threads with 2t/C running AVX2 code
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• Full xGEMM interface*, and native FORTRAN interface

• Just-in-Time (JIT) runtime dynamic code generation

• API supporting sparse matrices and other cases
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LIBXSMM: Roadmap

* Optionally intercepting xGEMM calls (LD_PRELOAD).
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[1] http://cp2k.org/: Open Source Molecular Dynamics 
application which is able to use LIBXSMM; see 
https://github.com/cp2k/cp2k/tree/intel.

[2] http://www.seissol.org/: SeisSol is one of the leading codes 
for earthquake scenarios, in particular for simulating dynamic 
rupture processes. LIBXSMM provides highly optimized assembly 
kernels which form the computational back-bone of SeisSol; see 
https://github.com/TUM-I5/seissol_kernels/tree/lts_compressed.
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LIBXSMM: Applications
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LIBXSMM home page

https://github.com/hfp/libxsmm

Related material

[1] Code generator for matrix-matrix multiplications
https://github.com/TUM-I5/GemmCodeGenerator

[2] Performance engineering and code tuning (video/slide series)
http://user.cscs.ch/support/tutorials/2014/node_level_performance_engineering_15_16_ma
y_2014/index.html

[3] Optimized matrix transposes
http://research.colfaxinternational.com/post/2013/04/25/Transposition-Xeon-Phi.aspx

Intel collaterals

[4] Xeon Phi Applications and Solutions Catalog
http://software.intel.com/xeonphicatalog

[5] 3rd Party Tools and Libraries
https://software.intel.com/en-us/articles/intel-and-third-party-tools-and-libraries-available-
with-support-for-intelr-xeon-phitm
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