Mechanics for the 5th and 6th pixel layer

Sergio Gonzalez Sevilla, Sebastian Michal (UniGe)

2nd ATLAS HV-MAPS mini-workshop July 2nd, 2015

1.- Conceptual design

Sergio Gonzalez Sevilla (UniGe)

Introduction

- Much work on-going to (re)-define the ITK layout for Phase-2
 - ITK Layout Task Force Workshop (June, 23): <u>https://indico.cern.ch/event/394897/</u>
 - see Andi's summary talk in this workshop
- High-level functional requirements (ATL-COM-UPGRADE-2015-015)
 1.- basic operational parameters
 - 2.- required tracking performance
 - pile-up robustness, coverage, track reco. efficiency (e, μ , π), track parameter resolutions, occupancies, fake-rates, etc.
 - 3.- interface to the LHC machine (protection against beam losses)
 - 4.- interface to the rest of ATLAS
 - ITK conforming to TDAQ requirements, latencies, L1-track trigger, etc.
 - 5.- access scenarios
 - beam-pipe removal, inner pixel layers removal, whole pixel removal, whole ITK removal
 - 6.- mechanical constraints
 - 7.- electrical requirements,
 - power dissipation, noise occupancy, ESD protections, SEU, grounding & shielding, specs for components (cables, capacitors), etc.
- 8.- safety requirements (interlocks, etc.) Sergio Gonzalez Sevilla (UniGe)

Mechanical constraints

- 6.1.- "While meeting all different requirements, the goal is also to minimize the amount of material inside the ITK volume by careful choices of material and routing. The layout if ITK structures should take into account the feasibility of cable routing and the effect of that routing on the material budget and detector performance".
 - material budget directly affecting the tracker performance
 - tracking resolution (low p_T tracks)
 - multiple scattering
 - tracking efficiency
 - pions: nuclear hadronic interactions
 - electrons: bremsstrahlung
 - passive material (services, mechanical support structure, interfaces) dominate over active material in the forward region $|\eta| > 1.5$
 - though typically everywhere in the detector: more sensors = more services

Positioning requirements

ATU-SYS-ES-0027

- Hermeticity and overlaps
 - ITK must be fully hermetic for 1 GeV p_T tracks originating from a cylinder of length z = ±150 mm along the beam direction.
 - Minimum overlap of 5 sensing elements (pixels or strips)
- Assembly tolerances
 - Iocal assembly placement accuracy (between adjacent modules) of ±100 μm
 - <u>local assembly survey</u>: comparable or better than the intrinsic sensor resolution
- Stability
 - directly to the track-based alignment strategy

	Timescale	Load	Requirement (RMS, rφ)	Alignment level
Short	1 d	external vibrationsvariations of thermal load (trigger rate variations)	2 µm	L1, L2
Medium	1m	- (infrequent) <u>'seismic' perturbations:</u> magnet ramps, cooling system cycles, power and HV cycles	5 μm	L3
Long	several months to years	- relaxation (creep)	100 µm	-

SLIM concept (1/3)

- <u>Main motivation</u>: strongly reduce the total amount of material along the track path in pixel layers at large radii
 - fulfilling tracking performance requirements and complying with mechanical constraints and positioning requirements
 - (classical) barrel-modules layout (// z-axis) + **inclined modules** for $|\eta| > \sim 1.0$ (Pixel layers 5 & 6) 0.5 1.0 1.5

- less services / dead material
- cost savings
- similar tracking performances, barrel / endcap transition region can be moved forward Sergio Gonzalez Sevilla (UniGe)

SLIM concept (2/3)

Sergio Gonzalez Sevilla (UniGe)

SLIM concept (3/3)

• Modules implemented on both sides of the carbon structure (Longeron)

Number of

- Same modules (barrel, tilted) for all layers, but different types of support structures depending on layer pairs
 - Layers 56: 3 types of longeron

- IBL experience on integration stand
- Stave extracted radially with a combined kinematic

Cooling line

- Simulation of cooling performance using CAD cells
 - ▶ pipe with Ø2 Ø2.5 mm inner diameter OK (CO₂ cooling)
 - stability of cooling temperature along longeron ±1°C

NICEF

100

80

60

G MF

Bart VERLAAT

Services routing

Material budget (1/2)

		SLIM				CLASSIC				
Layers	Radius (mm)	Number of Cooling Lines	Number of tilted modules	Number of Barrel modules	Total SLIM surface (m2)	Number of stave	Stave area (mm²)	Total area (m²)	Ratio	Saved surface (m ²) For a 2 m long stave
3rd	160	27	24	15	1.2	26	80000	2.1	0.56	0.9
4th	200	36	30	15	1.7	34	80000	2.7	0.64	1.0
5th	300	50	28	21	2.8	50	80000	4	0.70	1.2
6th	340	60	32	21	3.6	57	80000	4.6	0.78	1.0

Sergio Gonzalez Sevilla (UniGe)

2.- Prototyping

Sergio Gonzalez Sevilla (UniGe)

Prototyping campaign for SLIM concept

1.- Longeron

- manufacturing
 - short section: transition region

2.- Cooling lines

- cooling pipe bending jig
- cooling line-to-longeron bonding jig

3.- Module cells

- cooling blocks production
- barrel cell assembly and loading
- tilted cell assembly and loading
 - measure thermo-mechanical performances of cell assembly

Cooling lines

- Cooling pipe bending jig
- Cooling line-to-longeron bonding jig
 - adhesive type (epoxy film / glue) ? thickness ?

Base- and cooling-block prototypes (1/2)

- Aluminium-Carbon composite (60% Cf) from <u>NovaPack</u> (France)
 - ▶ Al alloy poured into a matrix of carbon fibres grown with given fibre orientation
 - ▶ in-plane fibres alignment, low CTE (Si CTE: 2.6 ppm/°C)

NovaPack

PROPERTIES	- 7	- 4
Thermal properties		
Thermal conductivity (W/m.K) / (X-Y)	200	230
Thermal conductivity (W/m.K) / (Z)	125	120
Specific Heat Capacity (J/kg.K)	880	850
Physical properties		
CTE 25 - 150°C (ppm/°C) / (X-Y)	7	4
CTE 25 - 150°C (ppm/°C) / (Z)	24	24
Density (g/cm ³)	2.46	2.4
Mechanical properties		
Young's modulus (GPa)	90	98
Flexural Strength (MPa)	160	185
Electrical properties		
Electrical resistivity (µohm.cm)	6.9	

Base- and cooling-block prototypes (2/2)

- First prototypes already received, **<u>extremely good quality</u>**
 - e.g: specifications for base-block positioning pin diameter: [0.994-0.980] mm ; metrology survey = 0.984 mm

5

BARREL CELL

3.- Alternatives

Sergio Gonzalez Sevilla (UniGe)

Upgrade of the ALICE ITS (1/2)

- ALICE Inner Tracking System (ITS)
 - ▶ 7 layers with MAPS
 - Inner Barrel: 22, 31, 39
 - Outer Barrel: 194, 247, 353, 405
 - ▶ 10.3 m², ~12.5 x 10⁹ pixels with binary readout
- Operated at room temperature (20 30 °C),

Beam pipe

nner Barre

Outer Barrel

Upgrade of the ALICE ITS (2/2)

- Stave mechanical components:
 - space-frame: truss-like lightweight mechanical support structure for the single stave based on composite material (CFRP)
 - cold-plate: sheet of high-thermal conductivity CF laminate, with embedded polymide cooling pipes, Ø1.0(2.7) mm ID for IB(OB) staves

SLIM + Truss structure (1/2)

- 1. Cooling lines + cooling pads attached to truss structure
 - adhesive bonding
 - mechanical fixation system

SLIM + Truss structure (2/2)

- 2. Flexible thermal strap for heat management
 - TPG plate behind module to minimise T within sensor
 - Layered PGS (Pyrolytic Graphite Sheet) connecting TPG and cooling pads (floating pipes)
 - modules positioned on truss-structure via CFRP local supports

Summary

- Still a number of uncertainties in the layout of the future ITK
 - hopefully to be solved soon
- SLIM has been presented as a possible engineering solution for the outermost pixel layers of the ITK tracker
 - Iarge benefits from using inclined sensors
 - large reduction in material budget
 - large reduction in cost
- First real prototypes currently being developed
 - evaluation of thermal and thermo-mechanical performances
 - comparison with detailed FEA simulations
 - validation of different component types and assembly techniques (pipe bonding)
- Further optimization of the layout after feedback from physics simulations

Thanks for your attention !

Electrical requirements

- 7.2.- "<u>Power dissipation</u> per detector module must be low enough to prevent thermal runaway of Pixel and Strip sensors defined in conjunction woth the cooling capacity specification. Power dissipation of end of stave or petal circuitry must be low enough to prevent a rise in stave or petal temperature above that required for the attached modules to present their sensor thermal runaway".
- 7.3.- "Noise occupancy of the Pixel and Strip detectors should be at least one and preferably two orders of magnitude less than the occupancy due to hits on tracks after exposure to lifetime irradiation".

SLIM with CFRP Truss structure: baseline

SLIM with CFRP Truss structure: alternative

11

1m

CMS layout options

CMS Tracker layout options

Sergio Gonzalez Sevilla (UniGe)

CMS layout options

CMS Tracker layout options

- Flat geometry
 - Pixel modules
 - PS modules (OT)
 - > 2S modules (OT)

• <u>Tilted geometry</u>

- Pixel modules
- **PS modules** (OT)
- > 25 modules (OT)

CMS layout options

Gain of tilted wrt flat (simpler) geometry

Engineering solutions for tilted modules: CMS

Sergio Gonzalez Sevilla (UniGe)