Studies on ATLAS Specifications for HV-MAPS

2nd ATLAS HV-MAPS Workshop

Geneva, July 2, 2015

André Schöning

Physics Institute Heidelberg

study impact of **pixel size** and **layout** on **tracking performance** \rightarrow derive **specifications** for **HV-MAPS designs**

Overview

- 6-pixel layers layout
- Comment on "optimal layout"
- Fake rate studies
- Track resolution
- Hit Occupancies

work in progress...

6 Pixel Layer Layout Study

- consider 6 pixel layers in barrel \rightarrow study 5 different layouts
- determine reconstruction efficiency and impurity from all layers (6/6)
- fast simulation incl. photon conversions (no hadronic interactions)
- pileup studied between PU=50-300

geometries:

Results of Layout Study

Results:

- 2 triplets perform best in efficiency, purity and CPU time
- vector layout is as good as triplet layout in reconstruction performance but needs considerably more CPU time
- tri_equi is almost as good as 2 triplets
- performance is worst if inner layers are equally spaced (equi, equi_tri)

Interpretation + Explanation

The fake rate is lowest if pixel layers are staggered The explanation is the following (see sketch):

In the transverse (bending) plane the search region for a third hit between an inner and outer hit candidate is shown for a minimum transverse momentum p_T which defines an envelope.

The probability to pickup a wrong (fake) hit is largest somewhere in the middle of the two layers. This situation corresponds to equidistant spacing.

In a real detector the occupancy decreases with radius. Especially in regions with high occupancies (small radius) equidistant spacing should be avoided!

Optimal Tracking Layout I

distinguish between low momentum and high momentum tracks!

high momentum

- three precise points are sufficient!
- Iarge lever arm helps!

large bending angles needed for precision
large lever Ω arm helps!

A.Schöning, Heidelberg PI

Optimal Tracking Layout III

distinguish between low momentum and high momentum tracks!

compromise:

disadvantages:

- no good seed triplet
- fake rate too large for high track multiplicities

Optimal Tracking Layout II

distinguish between low momentum and high momentum tracks!

does extrapolation between groups work?

With small pixels, YES

Extrapolation Uncertainty

extrapolation uncertainty becomes very small in z for short pixels!

Optimal Tracker Concept with only few layers works only for short pixels!

A.Schöning, Heidelberg PI

9

Optimal Tracking Concept with only few layers works only

- for short pixels!
- and with sufficient redundancy (hit inefficiencies, dead modules, etc)

\rightarrow simulations needed

A.Schöning, Heidelberg PI

11

2nd ATLAS HVMAPS Workshop, Geneva, July 2015

Track Reconstruction Performance

A.Schöning, Heidelberg PI

Track Parameter Resolution

Simulations confirm naïve expectations:

- momentum resolution and impact parameter resolution (d0) is proportional to transverse pixel size at high p_T.
- z0 resolution (vertex!) and polar angle resolution is proportionial to longitudinal pixel size at high p_T.
- detailed layout plays only minor role for track parameter resolution

For example: pixel size 25 x 25 μ m² would be significantly better than 50 x 250 μ m²

Triplet Track Trigger

 \rightarrow standalone tracking at 40 MHz (L0)

Impact parameter d0 and vertex parameter resolution Δz depends strongly on pixel size

 \rightarrow want smallest possible pixel size!

For example 40 x 40 µm²:

z-vertex resolution a few mm

- momentum resolution ~1% for $p_T = 1 \text{ GeV}$

Occupancies I

On a **large area** occupancies are given by **particle rates** and a factor depending on:

- inclination angle of track
- pixel size
- pixel thickness
- material budget (nuclear and e.m. IA)

On a small area occupancies are solely given by:

- inclination angle of track
- pixel size
- pixel thickness
- material budget (nuclear and e.m. IA)

but do not depend on the particle rate!

nuclear IA

Occupancies II

In order to keep the hit multiplicities small one should:

- reduce material budget (secondary interactions)
- orient sensors perpendicular to particle direction

Otherwise hit rate is increased by factor d/a (d=depletion area, a=pixel size)

For hit rate estimates

- need technology decision (depletion area)
- new GEANT simulations

Preliminary Conclusions

- Layout:
 - first three layers should be closely stacked
 - seven pixel layers without 1 or 2 redundancy layers are probably sufficient for tracking, for PU<300
- Pixel Size:
 - short pixels <100 µm reduce fake rate significantly</p>
 - pixel size of 25 µm x 25 µm in most inner pixel layers would boost tracking performance
 - for triplet trigger also short pixels would be required <100 µm, otherwise they could be longer
- Occupancy:
 - detailed GEANT simulations and technology choice needed