Upgrade of the ALICE ITS

Markus Keil (CERN)

Markus Keil (CERN)

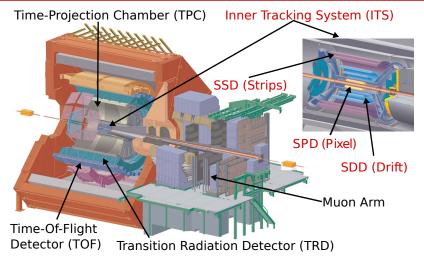
1 The ALICE ITS Upgrade

2 The Upgraded ALICE ITS

Pixel Chip Barrels and Staves Flex Printed Circuit Cooling

1 The ALICE ITS Upgrade

2 The Upgraded ALICE ITS


Barrels and Staves Flex Printed Circuit Cooling

3 Summary

Markus Keil (CERN)

ALICE and the Current ITS

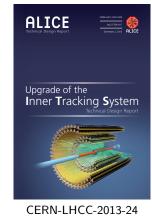
 ALICE is the heavy-ion focussed experiment at the LHC with the main goal to study strongly interacting matter

ALICE

Markus Keil (CERN)

ALICE ITS Upgrade

- Motivation: Focus on high-precision measurements of rare probes at low p_T
 - Cannot be selected by hardware trigger
 - Need to record large sample of events
- Goal: Pb-Pb recorded luminosity ≥ 10 nb⁻¹ (Plus: pp and p-Pb data)
 - Gain of factor 100 in statistics for minimum bias
- Strategy: Read out all Pb-Pb interactions up to the maximum LHC collision rate of 50 kHz
- ▶ When: 2nd long LHC shutdown LS2 (2018/19)


Upgrade of the Silicon Trackers

- New high-resolution, low-material inner tracking system (ITS), covering mid-rapidity
- New muon forward tracker (MFT) covering forward rapidity (silicon pixel telescope in front of the hadron absorber, in the acceptance of the muon spectrometer)
- Further Upgrade Items
 - New, smaller beam pipe
 - TPC: replacing of readout planes and electronics
 - Upgrade of forward trigger detectors (FIT) and ZDC
 - Upgrade of readout electronics of: TRD, TOF, PHOS and Muon Spectrometer
 - Upgrade of Online and Offline Systems

ITS upgrade

- Main goal: replacement of ALICE Inner Tracking System (ITS) during LHC long shutdown II in 2018–2019
- Design objectives:
 - Increased spatial resolution:
 - $\blacktriangleright \lesssim 5\,\mu m$ in longitudinal and transverse directions
 - Closer to interaction point:
 - move to r = 23 mm
 - Reduced material:
 - $\blacktriangleright\,$ aiming at $\lesssim 0.3\,\%\,\,X_0$ for innermost layers
 - additional benefit from thinner beam pipe
 - Increased readout speed:
 - Record 50 kHz Pb–Pb collisions (minimum bias)

fully approved

ITS upgrade

- Main goal: replacement of ALICE Inner Tracking System (ITS) during LHC long shutdown II in 2018–2019
- Design objectives:
 - Increased spatial resolution:
 - $\blacktriangleright \lesssim 5\,\mu m$ in longitudinal and transverse directions
 - Closer to interaction point:
 - move to r = 23 mm
 - Reduced material:
 - $\blacktriangleright\,$ aiming at $\lesssim 0.3\,\%\,\,X_0$ for innermost layers
 - additional benefit from thinner beam pipe
 - Increased readout speed:
 - Record 50 kHz Pb–Pb collisions (minimum bias)

	15311 0554 31893
	Journal of Physics G Nuclear and Particle Physics
	Volume 41 Number 8 August 2014
	Special Issue Uppraéo of the ALICE Experiment: Letter of Intent Trechical Design Repet for the Upgrade of the ALICE Inner Tracking System The ALICE Collaboration
	lopscience org/jphysg
J.	Phys. G 41 087002

The ALICE ITS Upgrade

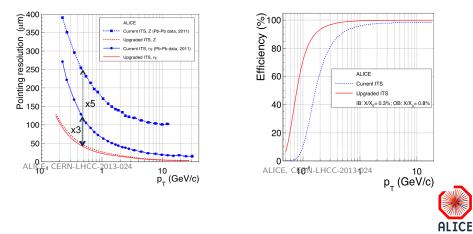
2 The Upgraded ALICE ITS

Pixel Chip Barrels and Staves Flex Printed Circuit Cooling

3 Summary

Markus Keil (CERN)

Layout of the Upgraded ITS


- 7 layers from r=22 mm to r=400 mm
- \blacktriangleright \sim 10 ${
 m m}^2$ of silicon
- 12.5 GPixels

- Moderate radiation hardness required (at 30°C), expected radiation levels (innermost layer, safety factor of 10):
 - \blacktriangleright 2700 krad (TID) and 1.7 \times $10^{13}\,1\,{\rm MeV}\,{\rm n}_{\rm eq}{\rm cm}^{-2}$
- ▶ η coverage: $|\eta| \leq 1.22$, for tracks from 90% most luminous region

Expected Performance

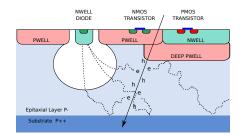
 Expected improvement of impact parameter resolution (left) and tracking efficiency (right).

The ALICE ITS Upgrade

2 The Upgraded ALICE ITS Pixel Chip

Barrels and Staves Flex Printed Circuit Cooling


3 Summary


Requirements (TDR):

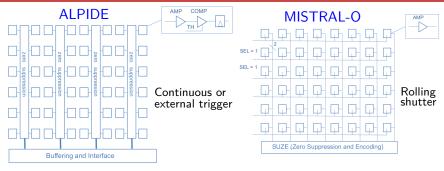
Parameter	Inner barrel	Outer barrel	
Silicon thickness	50μm		
Spatial resolution	5µm	10µm	
Power density	$< 300 \text{ mW/cm}^2$	$< 100 \mathrm{~mW/cm^2}$	
Event resolution	< 30µs		
Detection efficiency	> 99%		
Fake hit rate	$< 10^{-5}$ per event per pixel		
TID radiation *	2700 krad	100 krad	
NIEL radiation *	1.7×10^{13} 1 MeV n_{eq}/cm^2	$10^{12} \ 1 \ \mathrm{MeV} \ \mathrm{n_{eq}/cm^2}$	

* Including a safety factor of 10, revised numbers w.r.t. TDR

Pixel Chip Technology

Monolithic active pixel sensors in TowerJazz $0.18\,\mu\text{m}$ CMOS imaging process

- High-resistivity epitaxial layer on p-substrate
- Quadruple well process: deep pwell shields PMOS transistors, allowing for full CMOS circuitry within active area
- Application of (moderate) bias voltage to substrate can be used to increase depletion zone around NWELL collection diode



13 / 36

Markus Keil (CERN)

ALICE ITS Upgrade

Chip architectures

- Readout: Data driven sparse readout
- Pixel pitch: 28μm × 28μm
- Event time resolution: $\leq 2\mu s$
- Power consumption: ~ 40 mW/cm²
- Dead area: 1.1 mm × 30 mm
- Baseline solution is the ALPIDE

- Rolling shutter
- 36μm x 65μm
- ► ~ 20µs
- ▶ 80 90 mW/cm²
- 1.5 mm x 30 mm

Both chips have the same dimensions, identical physical and electrical interfaces

Markus Keil (CERN)

ALICE ITS Upgrade

The ALPIDE Development Program

2012 2013	Explorer-0 Explorer-1	Explorer and Investigator: Analog chip to study pixel geometry, starting material and sensitivity to radiation
	pALPIDEss-0	
		 pALPIDEss: Small scale digital chip to study the
2014 May	pALPIDE-1 pALPIDEss-1 Investigator	priority encoder and the front-end electronics
2015 April	pALPIDE-2	 pALPIDE-1: Full scale chip to study system effects
2015 August	pALPIDE-3	pALPIDE-2: Full scale chip which supports
2016 February	ALPIDE	integration into module protot Supports local bus of Outer B modules ALICE


Markus Keil (CERN)

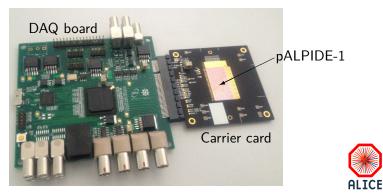
2

ALPIDE Prototype Generations:

pALPIDE-1

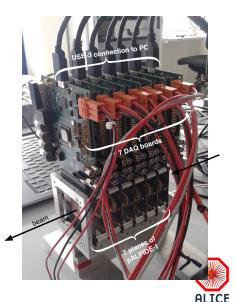
- First prototype with final size $(15 \text{ mm} \times 30 \text{ mm})$
- ▶ 512 x 1024 pixels
- Pixel size 28µm x 28µm
- Digital readout with priority encoder
- Four sectors with different pixel layouts

Sector	Nwell diameter	Spacing	Pwell opening	Reset
0	2μm	1μm	4µm	PMOS
1	2μm	2μm	бµт	PMOS
2	2μm	2μm	бµт	Diode
3	2µm	4µm	10µm	PMOS

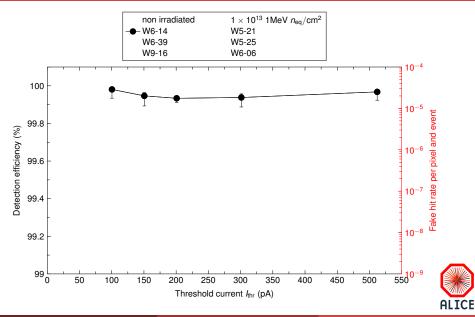

Markus Keil (CERN)

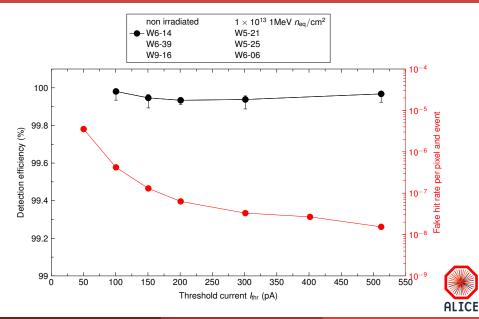
ALICE ITS Upgrade

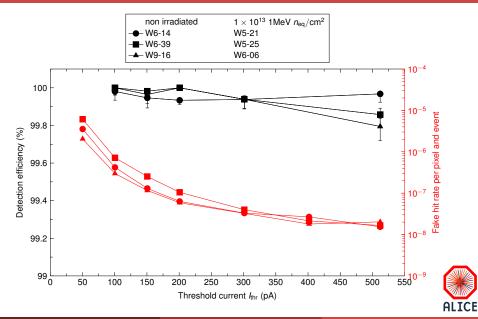
ATLAS HV-MAPS Workshop


Characterization methods - laboratory

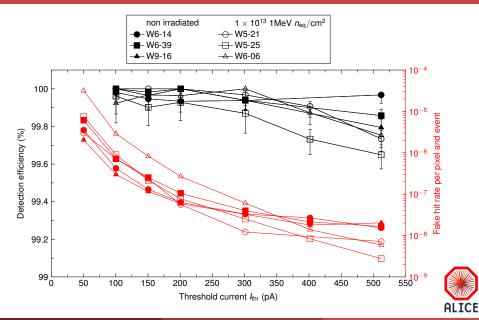
- USB based test system. Performed comprehensive lab measurement program
 - Noise and threshold scans
 - Pulse shape / pulse length
 - Noise occupancy measurements
 - Source measurements
 - For different back bias voltages




- Test beams are carried out using a telescope made entirely of pALPIDE-1
- Extensive campaign with beams at PS, SPS, PAL (Korea), BTF (Italy), DESY (Germany)
- In the following: results with 6 GeV/c π⁻ from CERN PS
- Tests before and after neutron irradiation

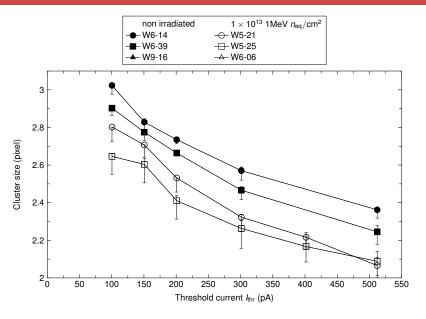


Markus Keil (CERN)



Markus Keil (CERN)

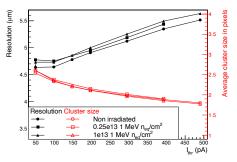
ALICE ITS Upgrade



Markus Keil (CERN)

Markus Keil (CERN)

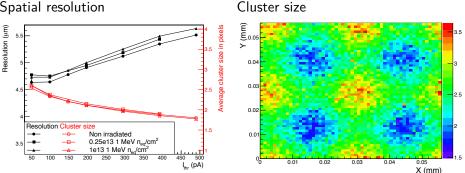
Cluster sizes



ALICE 20 / 36

Spatial resolution

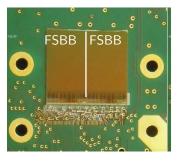
Spatial resolution



- Average cluster sizes of 1.5–3 pixels
- Spatial resolution of around 4.5 μm to 5.5 μm

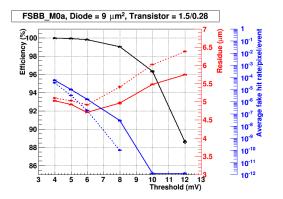
Spatial resolution

Spatial resolution


- Average cluster sizes of 1.5-3 pixels
- Spatial resolution of around $4.5 \,\mu\text{m}$ to $5.5 \,\mu\text{m}$
- → Can use telescope tracking to study properties differential in track impinging point
 - Cluster size varies nicely leading to good intrinsic resolution

MISTRAL development

MISTRAL FSBB


- First Full Scale Building Block (FSBB)
- Sensitive area: 13.7 × 9.2mm² (~ third of the final chip size)
- Staggered pixels of 22 × 33µm²
- In-pixel pre-amplification and clamping with 6 metal layers
- 416 × 416 of Columns x Row of pixels ended by discriminator (8-cols with analogue output)
- Double-row readout at 160 MHz clock frequency resulting in 40µs integration time
 MISTRAL-O
 - Being optimized for the outer layers
 - \blacktriangleright Target requirements on the spatial resolution: $\sim 10 \mu m$
 - Target requirements on power consumption: < 100mW/cm²

ALICE ITS Upgrade

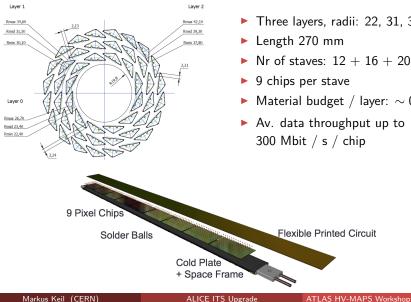
Performance of the MISTRAL FSBB

- \blacktriangleright Large operational margin: 5.0 mV \leq Thr \leq 8.0 mV
- Fake hit rate averaged over 11 sensors
- ▶ Fake hit rate drops by O(10) by masking the 20 noisiest pixel
- \blacktriangleright Tracking resolution is (4.7 \pm 0.1)µm (U) and (4.9 \pm 0.1)µm (V) Thr= 6 mV

23 / 36

Markus Keil (CERN)

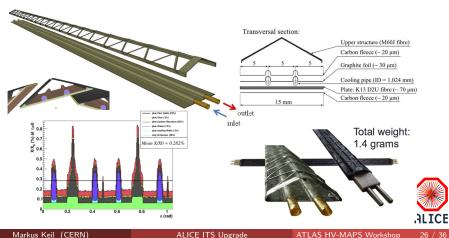
The ALICE ITS Upgrade


```
2 The Upgraded ALICE ITS
Pixel Chip
Barrels and Staves
Flex Printed Circuit
Cooling
```


Markus Keil (CERN)

ALICE ITS Inner Barrel

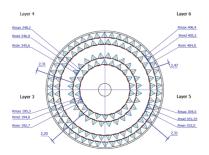
- Three layers, radii: 22, 31, 39 mm
- Length 270 mm
- Nr of staves: 12 + 16 + 20
- 9 chips per stave
- Material budget / layer: $\sim 0.3\% X_0$


ALICE

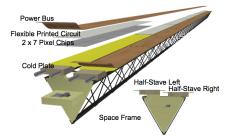
25 / 36

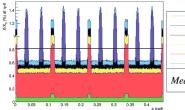
Av. data throughput up to 300 Mbit / s / chip

Inner Barrel Stave **Design and Prototypes**


- Lightweight carbon structure with polyimide cooling pipes (wall thickness $25 \,\mu m$)
- Average material budget $< 0.3\% X_0$

Inner Barrel Prototype

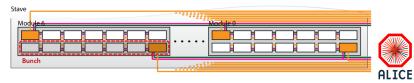

- 4 layers, radii: 194, 247, 353, 405 mm
- Length: 843 (ML), 1475 mm (OL)
- Nr of staves: 22, 28, 40, 46
- Nr of modules/stave: 4 (ML), 7 (OL)
- Nr of chips/module: 14
- $\blacktriangleright\,$ Material budget / layer: $\sim 0.8\%\,X_0$
- Data throughput < 12 Mbit / sec / cm²



Outer Barrel Stave

- Outer barrel stave consists of two staggered half-staves
- Each half-stave further segmented into modules
- Average material budget per layer ~ 0.8% X₀





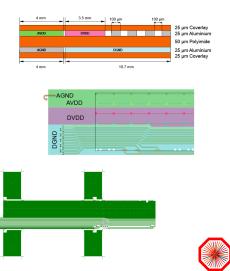
Stave Readout Topology

- From the innermost to the outermost layer
 - The expected hit densities decrease by a factor of 100.
 - The number of chips per (half-) stave increases from 9 to 98.
- Different readout topologies for inner and outer barrel
 - Inner Barrel: each chip drives point-to-point data line to off-detector electronics.

Outer Barrel: chips grouped into modules with two master chips; point-to-point link from masters to off-detector electronics.

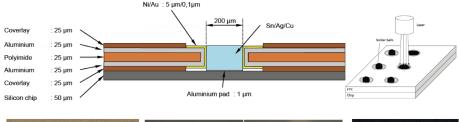
The ALICE ITS Upgrade

2 The Upgraded ALICE ITS


Pixel Chip Barrels and Staves Flex Printed Circuit Cooling

Flex Printed Circuit (FPC)

- Flexible printed circuit of low-CTE polyimide and aluminium
- Power planes for digital and analogue voltage
- 11 differential pairs (clock, configuration, 9 data lines)



Outer Barrel: Decided to use Cu instead of Al (\sim +0.1% X₀), physics impact low enough ALICE

Markus Keil (CERN)

ALICE ITS Upgrade

Chip-to-FPC Connection

Chip and FPC will be connected by laser soldering

- Connection to dedicated pads distributed over the full chip area
- Successfully tested with daisy-chain and real chips
- Thermal cycling tests currently ongoing

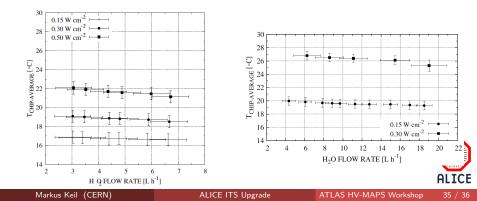
Markus Keil (CERN)

ALICE ITS Upgrade

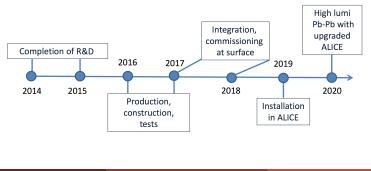
The ALICE ITS Upgrade

2 The Upgraded ALICE ITS

Pixel Chip Barrels and Staves Flex Printed Circuit Cooling


3 Summary

Markus Keil (CERN)


Cooling

- Goal: Chip temperature below 30°C
- Baseline: leakless (< 1 bar) water cooling</p>
- Thermal characterisation of stave prototypes with heaters for different flow rates:
 - Chip (heater) temperature well below 30°C
 - Pressure drop < 0.3 bar</p>

Summary

- ALICE will replace its entire Inner Tracking System by a MAPS based pixel-only tracker during LS2
 - All R&D items of the project are close to finalised
 - Two working pixel chip prototypes
 - Currently completing R&D and preparing for start of production / construction in 2016

ALICE