CLIC detector optimization

Magdalena Münker, Andreas Nürnberg, Rosa Simoniello, CERN PH-LCD

> 2nd ATLAS HV-MAPS Mini-Workshop Univ. Geneva, 02. 07. 2015

Outline

- CLIC detector, requirements on tracking detectors
- ► Tracker layout, performance
- Occupancy due to beam induced background
- Sensor response simulation, TCad based model

Introduction

Andreas Nürnberg: CLIC detector optimization

CLIC detector in a nutshell

- ► High precision:
 - \blacktriangleright jet energy resolution $\sigma_{E}/E\sim 3.5\,\%-5\,\%$
 - ▶ fine grained calorimetry 13 mm² ECAL cell size
 - Momentum resolution $\sigma_{p_T}/p_T^2 \sim 2 \times 10^{-5} \text{ GeV}^{-1}$
 - Impact parameter resolution $\sigma_{r\phi}\sim5\oplus15/(p\sin^{3/2}\Theta)\mu m$
- Overlapping beam induced background:
 - ▶ high rate 3 \(\gamma\) → hadrons per bunch crossing
 - requires precise timing \leq 10 ns
 - Pixel size 25 × 25 µm²
- ► No issues from radiation damage:
 - ▶ 1×10^{-4} LHC levels
 - except for small forward calorimeters
- No trigger, full readout of 156 ns bunch train

Vertex detector requirements

Goal: efficient tagging of heavy quarks through a precise determination of displaced vertices

Multi-layer barrel and endcap pixel detectors

- ► 560 mm in length
- Barrel radius from 30 mm ~ 70 mm

- Single point resolution of 3 µm
- Material budget < 0.2 %X₀ per layer
- No active cooling elements use forced air flow cooling
- Limit the power dissipation to 50 mW cm⁻²
- Hit time slicing of 10 ns

Andreas Nürnberg: CLIC detector optimization

Main silicon tracker

- ► Tracker requirements
 - 7 µm single point resolution
 - ► 10 ns timestamping
 - 5 barrel layers, 6 endcap discs
 - ▶ Radius ~ 1.5 m, half-length ~ 2.3 m

- High occupancy in certain regions calls for large pixels and/or short strips
- Very light, $\sim 1~\% X_0$ per layer
 - Requires very thin materials/sensors
 - Can take advantage from power-pulsing
 - Air cooling probably not possible

Andreas Nürnberg: CLIC detector optimization

Tracker layout study

Andreas Nürnberg: CLIC detector optimization

Fast simulation model

- ► LiC detector toy
- Full track reconstruction algorithm
- Multiple scattering included
- Automatised fast-simulation procedure allows for easy change of parameters
 - Position and number of tracking layers
 - Material budget
- ► Assume 7 µm single point resolution
- Realistic scaling of material budget for support, cables and cooling has been included

First barrel layer position

- Move out radius first barrel layer in steps of 50 mm:
 - ► 230 mm (starting point)
 - ▶ 250 mm
 - ▶ 280 mm
 - ► 330 mm
- Other barrel layers move out accordingly

Results vs. momentum - d_0 resolution

- Important to have a layer closer to the VXD
- At 90° no variation, same number of hits (and material budget) for all tracks

Model for cabels

- Material budget for cables and cooling should scale according to the layers size and position
- Assumed constant cable/cooling density

$$A_{cyl} = 2\pi rz$$
$$A_{ring} = \pi (R^2 - r^2)$$

Andreas Nürnberg: CLIC detector optimization

Results changing material budget for cables

 \rightarrow As expected in the cable region (30° to 50°) worsening of the p_T resolution, small effect on the d_0 resolution (dominated by vertex detector)

Andreas Nürnberg: CLIC detector optimization

Model for supports

- For outer radii larger material is needed in order to match stability requirements
- Rough implementation: material for outermost layer 3 times larger than for innermost, linearly rescaled for layers in between

Andreas Nürnberg: CLIC detector optimization

Model for supports

- For outer radii larger material is needed in order to match stability requirements
- Rough implementation: material for outermost layer 3 times larger than for innermost, linearly rescaled for layers in between

 Extra support material in the outer layers has no big impact on resolution

Beam induced background

Andreas Nürnberg: CLIC detector optimization

Beam induced backgrounds

- Dense bunches, high energy, small transverse size leads to very high E-field, resulting in beamstrahlung
- Consequences:
 - reduction in \sqrt{s}
 - high occupancies drive small pixel/strip size for tracking
 - also geometric requirements on vertex detector inner radius
 - background energy deposits drive small cell size for calorimetry
 - ► high precision timing

No bkg suppression

After bkg suppression

Andreas Nürnberg: CLIC detector optimization

Hitrate in main tracker

- Full geant4 based detector simulation (Mokka)
- Evaluate hitrate from beam induced background in the main tracker
- No digitization, no clustering

► Hitrate depends strongly on radius, mostly independent of z-position

Max. strip length in the main tracker

- ▶ Want to keep occupancy per bunch train below 3 %
- Beam induced background sets limit on maximal size of readout cells
- Assume 50 µm pitch, avg. clustersize 2.6, include process dependent safety factors (5 for incoherent pair production, 2 for $\gamma\gamma \rightarrow$ hadrons)

▶ Inner layers: few mm strip length, outer layers: few cm strip length

Sensor response simulation

Andreas Nürnberg: CLIC detector optimization

Motivation

- For overall detector performance, 7 μm single point resolution in main tracker required
- ► How to achieve? What kind of sensor technology? What readout cell size is needed?
- ► Spatial resolution can be improved over the binary limit of ^p/_{√12}, if charge is shared among two cells. Can we benefit from that?
- ► This study:
 - T-CAD simulation of sensor response
 - Implement a model to compare different sensor designs and readout schemes
 - Critera for comparison: efficiency, resolution and noise induced occupancy

Sensor

- T-CAD finite element simulation of silicon sensor
- As starting point: p-in-n silicon strip sensor, best guess of process details, 2 dimensional cut, no B-field (yet)
- Simulate particle hit at several positions in the strip unit cell, fixed incidence angle
- \blacktriangleright Readout of current signal \rightarrow integration over time \rightarrow charge signal per strip

Andreas Nürnberg: **CLIC** detector optimization

02. 07. 2015 20

Validation - perpendicular incident

Validation of simulation model using testbeam data taken with planar sensors on timepix readout chips at DESY

- Reconstruct particle hit position, center of gravity or η -method
- Calculate residual distribution by comparison to MC-truth particle hit
- Emulate telescope track resolution
- Good agreement to testbeam data

Validation - angular dependence

- Clustersize as function of incidence angle
- Geometric effect: clusters are larger with inclination
- Good agreement to testbeam data

- Resolution as function of incidence angle
- Increased charge sharing in thin sensors results in better resolution
- Good agreement to testbeam data

Exemplary simulation results

Summary

- ► Layout optimization using LiC toy fast simulation
 - Variation of tracker layout
 - Estimation of momentum and impact parameter resolution
 - Realistic scaling for material budget of supports, cables and cooling
- Occupancy due to beam induced background restricts the maximal strip length in the main tracker
 - Few millimeters in the inner layers
 - Few centimeters in the outer layers
- Simulation study of silicon sensor response
 - Detailed T-CAD simulation of sensor response to particle hit
 - Toy model allows estimation of efficieny and resolution as function of operation parameters
 - However, planar sensors may not be the final answer for the main tracker
 - $\blacktriangleright\Rightarrow$ Possibility to look at other technologies (e.g. HV-CMOS) by replacing T-CAD simulation part

Backup

Andreas Nürnberg: CLIC detector optimization

Hitrate in VXD

► No z-dependence, steep fall-off in r

Andreas Nürnberg: CLIC detector optimization

Occupancy in VXD

