HV-MAPS for the Mu3e Experiment

Geneva, July 2, 2015

André Schöning

Physics Institute Heidelberg

for the Mu3e Pixel Group

André Schöning, Heidelberg-PI

1

The Mu3e Experiment

- Search for LFV decay: $\mu \rightarrow eee$
- Single event sensitivity of
 - ~10⁻¹⁵ Phase I
 - → <10⁻¹⁶ Phase II
- Stopped muon rate 10⁸/s (>10⁹/s)
- 10 (>100) tracks within 50ns
- Sensitive to New Physics:

Discussed in Research Proposal: \rightarrow arXiv:1301.6113

Pileup

History of LFV Decay experiments

André Schöning, Heidelberg-PI

4

PSI Beam Facilities for Mu3e

5

Phase I: ~10⁸ muons/s PiE5: New Compact Muon Beam Line André Schöning, Heidelberg-PI

Phase II: >10⁹ muons/s HiMB: High Intensity Muon Beam Line 2nd ATLAS HVMAPS Workshop in Geneva July 2015

Kinematic Resolution + Multiple Scattering

<u>Muon decay:</u>

- → electrons in low momentum range p < 53 MeV/c</p>
- Multiple scattering is dominant!

 Need thin, fast and high resolution tracking detectors operated at high rate of ~ 10⁹ particles/s

$$\Theta_{MS} \sim \frac{1}{P} \sqrt{X/X_0}$$

Silicon Pixel Detector

I.Peric, P. Fischer et al., NIM A 582 (2007) 876 (ZITI Mannheim, Uni Heidelberg)

Technology Choice

High Voltage Monolithic Active Pixel Sensors (HV-MAPS)

- high precision \rightarrow pixels 80 x 80 μm^2
- can be "thinned" down to ~35-50 μ m (~ 0.0005 X₀)
- Iow production costs (standard HV-CMOS process, 60-80 V)
- active sensors \rightarrow hit finding + digitisation + readout
- triggerless and fast readout (LVDS link integrated)
- low power: \rightarrow **250** mW/cm²

Mu3e Baseline Design - Phase I

Very thin hollow target \rightarrow low multiple scattering

Very thin silicon layers (50 $\mu m) \rightarrow$ reduces multiple scattering

André Schöning, Heidelberg-PI

Good time resolution of $<1ns \rightarrow$ reduces accidentals

André Schöning, Heidelberg-PI

Mu3e Baseline Design Recurl pixel layers Inner pixel layers E µ Beam Target Scintillating fibres Outer pixel layers

Helium atmosphere \rightarrow improves momentum resolution of recurling tracks

Good time resolution of ~0.1ns \rightarrow reduces accidentals

Very compact design \rightarrow not much space for services!

Mu3e Design for Phase I

Homogenous magnetic field \rightarrow allows fast online reconstruction

André Schöning, Heidelberg-PI

Momentum Resolution in MS Regime

Standard spectrometer:

$$\frac{\sigma_p}{P} \sim \frac{\Theta_{MS}}{\Omega}$$

(linearised)

 $\begin{array}{l} \mbox{precision requires large lever arm:} \\ \rightarrow \mbox{large bending angle } \Omega \end{array}$

 \rightarrow also relevant for LHC

Momentum Resolution in MS Regime

• "Half turn" spectrometer:

$$\frac{\sigma_p}{P} \sim O(\Theta_{MS}^2)$$

- best precision for half turn tracks
- measure recurlers !

Tracking Design Considerations

 \rightarrow compromise between precision and acceptance

Staged Approach

Realistic Pixel Detector Design

detailed cooling simulations and tests in lab

Mu3e-Tracker Construction

<u>Ultra-thin detector mock-up:</u>

- sandwich of 25 µm Kapton[®]
- 50 µm glass (instead of Si)

Sandwich design:

- HV-MAPS
- Kapton Frame -

 \rightarrow X/X₀ ~ 0.1% per layer

50 µm silicon wafer

Mupix Generation

	in-pixel CSA	2nd-stage CSA	pixel size (mu²)	comparator	serial Gigabit link	internal state machine
Mupix4	X		92 x 80	standard		
Mupix6	X	X	103 x 80	new		
Mupix7	X	X	103 x 80	new	X	X

Number of pixels: 40 x 32

André Schöning, Heidelberg-PI

Sensor + Analog + Digital

André Schöning, Heidelberg-PI

ToT of Fe55 Peak with Mupix4

Single stage amplifyer (in-pixel & periphery)

ToT of Fe55 Peak with Mupix6/7

Double stage amplifyer (in-pixel & periphery) + different comparator circuitry

André Schöning, Heidelberg-PI

Mupix Beam Telescope

- 4 layers of Mupix prototype chips
- state machine outside MAPS
- synchronous readout at ~1 MHz achieved

MAMI (Mainz)

André Schöning, Heidelberg-PI

Paul Scherrer Institute

Timewalk

measurement at PSI

Latency vs ToT

 vs Time over threshold signal

time resolution: **sigma < 10 ns**

Dirk Wiedner PSI 2/15

09.02.2015 • 41

First Test Beam Result of Mupix4

sensor efficiency > 99.5%

Threshold-DAQ Tuning Procedure

Accumulated HitMap with a Fe55 Source 7000 35 6000 30 5000 25 Hits 40005 Nor Jumber 15 2000 1000 5 10 15 20 25 30 Column

Untuned sensor

- all pixels working
- single noise pixel with 7kHz

Accumulated HitMap with a Fe55 Source

Tuned sensor

• pixel rated between 300-900 Hz

Test-Beam Results Mupix7 chip

André Schöning, Heidelberg-PI

Commissioning of Mupix7 Gigabit Link

Mupix7 serial RO

1.25 Gbit/s

2.5 Gbit/s

André Schöning, Heidelberg-PI

First Mupix7 Data over Serial Link

Laser Spot visible after decoding hit addresses

10/8 bit encoded data \rightarrow measurement of bit error rates

Mupix7 over Flexprints Readout

 \rightarrow no transmission errors observed: BER< 10⁻¹⁴

André Schöning, Heidelberg-PI

Mupix6 Test Boards Available

For those who want to test or irradiate Mupix6 chips:

- ~ 10 test boards and documentation available
- \rightarrow we are happy to help people to get acquainted with the test setup

André Schöning, Heidelberg-PI

Conclusions

- Fully functional Mupix7 prototype is working!
- All requirements fulfilled except power consumption which is probably to high
- Further improvements planned:
 - higher resistive substrate → larger signal
 - improvements on comparator
- Submission of large scale chip (2cm) in 2016 (new AMS H18 process).

THANKS to all contributing to this big success!

->

Backup

Backgrounds

Irreducible BG: radiative decay with internal conversion

Accidental Backgrounds

- Overlays of two normal muon decays with a (fake) electron
- Electrons from: Bhabha scattering, photon conversion, mis-reconstruction

Need excellent:

- vertex resolution
- timing resolution
- kinematic reconstruction

 $\sigma_{vtx} \sim 200 - 300 \,\mu m$ $\sigma_{time} \leq 0.1 - 1 \,ns$ $\sigma_{M_{eve}} \leq 0.5 \,MeV$