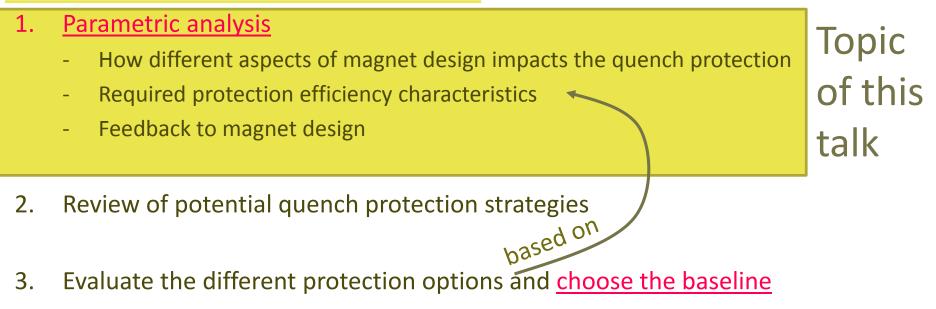
Quench protection task

Tiina Salmi and Antti Stenvall 26.6.2015



TAMPERE UNIVERSITY OF TECHNOLOGY

Goals of quench protection task

Plan for the first 10 months (June 2015 – march 2016):

4. Identify the modeling tools to use and the needed updates

The following 30 months: Protectability of the design options, protection schemes for long and short version of the chosen magnet, magnets connection in a string

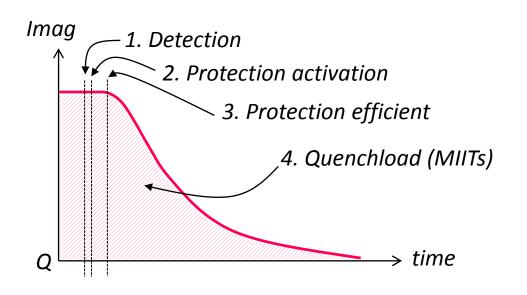
Distribution of work

First 10 months

- Conceptual quench studies for 16 T dipole: TUT
- Review and baseline for protection: TUT + ALL
- Basic simulation tool comparison: TUT + INFN/Milano
- Then
 - Detailed analysis of individual design options
 - Work to be shared later
- Later
 - Extend analysis to strings of magnets

Let's fill this together for the first parametric analysis

Cable parameter	Ref. value	Range of variation	Ref. in HL-LHC QXF
Width, bare (mm)			18.4
Thickn., bare (mm)			1.6
Insul. thickn. (mm)			0.145
Filling factor (A _{strands} /A _{bare})			~0.80
Cu RRR			140
Strand Cu/SC			1.15
# of strands			40
Critical surface			Godeke fit for a measured QXF strand (RRP_1501)
Operation conditions	Ref. value	Range of variation	Ref. in HL-LHC QXF
lop (A)			16500
Bop (T)			11.4
Тор (К)			1.9


Magnet	Ref. value	Range of variation	Ref. in HL-LHC QXF
Lop (H/m)			8.2
# of coil turns			50
Magnet length (m)			4 or 7
			Design v.2. (from ROXIE)

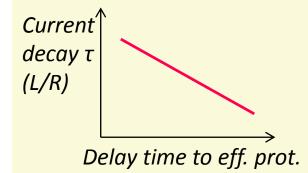
Field map or distribution of margin

(EuroCirCol

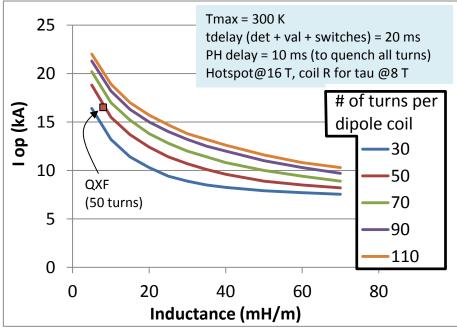
Basics of quench protection

- The problem with a quench is that the current heats the cable via resistive losses.
- The goal of the protection is to discharge the magnet current <u>fast</u> (within ~100-500 ms).

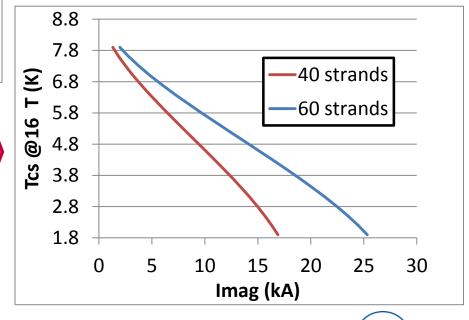
Starting point assumption: The
windings absorb the stored
energy ↔ the current decay
driven by the coils resistance.



Important magnet parameters


- *Peak field and cable parameters:* → MIITs for 350 K 1.
- *Operation current and inductance(/m)* \rightarrow 2.
- **3.** Critical surface \rightarrow Detection delay
- 4. #of coil turns, distribution of field / margin → Estimation of heater (or quench) delays
- 5. *Magnet length* (only if ext. dump) \rightarrow Hotspot temperature

This analysis does not consider the technology: E.g., how difficult will be to build those heaters. The length of the magnet **strongly** impacts the difficulty.



Example results using the QXF cable

Note how small temperature margins will be at 16 T!!

These are preliminary results just to show an example of a type of analysis that can be used to guide the magnet design. Below these lines the $T_{hotspot} < 300$ K. In this example assumed 30 ms total delay from quench start to all coils quenched.

EuroCirCol