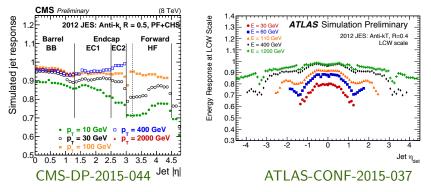
ATLAS and CMS jet calibration and uncertainties: $$8\,{\rm TeV}$$ and beyond

ATLAS: Bogdan Malaescu, <u>Steven Schramm</u>, Dimitris Varouchas CMS: Henning Kirschenmann, Mikko Voutilainen

> LHC Top Working Group November 18, 2015


Introduction

- ATLAS and CMS place strong constraints on top-related observables
 - Combining results further improves these precision measurements
 - Requires knowledge of the inter-experimental uncertainty correlations
- The Jet Energy Scale/Correction (JES/JEC) uncertainties are often the dominant experimental systematics in top combinations
- \bullet A correlation procedure was previously defined for $7\,\mathrm{TeV}$
- $\bullet\,$ This procedure has now been updated for $8\,{\rm TeV}$ combinations
 - New today: ATL-PHYS-PUB-2015-049, CMS PAS JME-15-001
 - $\bullet\,$ An incremental update, similar to the $7\,{\rm TeV}$ recommendation
- $\bullet~8\,{\rm TeV}$ references for the JES calibration and uncertainties:
 - ATLAS Global Sequential Calibration note: ATLAS-CONF-2015-002
 - ATLAS di-jet and multi-jet note: ATLAS-CONF-2015-017
 - ATLAS combination and uncertainties note: ATLAS-CONF-2015-037
 - ATLAS Z/ γ +jet note: ATLAS-CONF-2015-057
 - ATLAS pileup paper+note: arXiv:1510.03823, ATLAS-CONF-2013-083
 - CMS Run-I jet performance paper: JME-13-004 (in final approval)

The JES calibration

- The JES calibration accounts for the detector response profile
 - Different detector features are visible
- Similar general trends seen in both ATLAS and CMS
 - In the central region, orange points are roughly the same p_{T}
 - In the forward region, black points are roughly the same $p_{\rm T}$

The JES uncertainties

- The main JES calibration is derived in MC and applied to data
- In situ measurements are necessary to quantify/fix differences
 - Residual calibrations and associated uncertainties derived in situ
 - Additional systematic sources added for other effects
- Note that the plots above have a different vertical scale

How to compare the JES between experiments

- The JES uncertainty is built from many uncertainty sources
 - First step: merge components of similar types into groups
- Experiments have JES uncertainties to cover roughly the same effects
 - Absolute scale, relative scale, pileup, flavour, ...
 - Second step: identify corresponding groups of uncertainty components
- The methods used to derive the uncertainties may vary
 - Different MC generators for differences, different parametrizations, ...
 - Third step: determine the degree of similarity in the derivation method
- The following slides quickly cover the recommendation
 - The recommendation is divided into nine groups of components

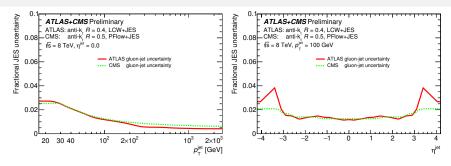
Absolute and relative balance in situ terms

Description	Components, CMS	Components, ATLAS	Corr. range
1a. Statistical <i>in situ</i> terms		[11] Z -jet balance stat./meth. terms (p_T) ,	0%
	AbsoluteStat, SinglePionHCAL,	[13] γ -jet balance stat./meth. terms (p_T),	
	RelativeStat[FSR][EC2][HF]	[10] multi-jet balance stat./meth. terms (p_T) ,	
		η -intercalibration statistical term (p_T, η)	
1b. Detector <i>in situ</i> terms	AbsoluteScale, SinglePionECAL,	Z-jet balance det. term,	
	RelativeJER[EC1][EC2][HF],	γ -jet balance det. term,	0%
	RelativePt[BB][EC1][EC2][HF]	[2] correlated \mathbf{Z}/γ -jet balance det. terms (p_{T})	
2. Absolute balance modeling		[7] Z-jet balance model + mixed terms (p_T),	
	AbsoluteMPFBias	[4] γ -jet balance model + mixed terms (p_T),	0-50%
		[2] correlated \mathbf{Z}/γ -jet balance terms ($p_{\rm T}$),	
		[5] multi-jet balance model + mixed terms (p_T)	
3. Relative balance modeling	RelativeFSR	η -intercalibration modeling (p_T, η)	50-100%

• ATLAS and CMS measure the scale *in situ* with the same methods

- Absolute scale: balance jets with a well-known reference object/system
- Relative scale: balance forward probe jets with central reference jets
- Statistical and detector terms: uncorrelated between experiments
- Absolute balance modelling: correlation at the level of 0-50%
 - Similar sources, but many are not fully independent of the detector
- Relative balance modelling: correlation at the level of 50-100%
 - Similar techniques, similar MC generators, some analysis differences

Flavour terms



Description	Components, CMS	Components, ATLAS	Corr. range
 g-jet fragmentation 	FlavorPureGluon	Flavor response (p_T, η)	100%
5. <i>b</i> -jet fragmentation	FlavorPureBottom	b -jet response ($p_{\rm T}$)	50-100%
6. Other fragmentation types	FlavorPureQuark, FlavorPureCharm	Flavor composition $(p_{\rm T},\eta)$	0%

- ATLAS and CMS treatment of flavour uncertainties is quite different
- ATLAS: assume in situ calibrates to light quark scale (u/d/s/c)
 - Uncertainties for deviations from pure light quarks (bottom, gluon)
- CMS: label each jet as light quark (u/d/s), charm, bottom, or gluon
 - Different uncertainties for each jet flavour
- Gluon fragmentation uncertainties: 100% correlated
 - $\bullet~$ Both derived from Pythia vs $\operatorname{Herwig}++$ response differences
- Bottom fragmentation uncertainties: 50-100% correlated
 - $\bullet~$ Both derived from Pythia vs $\operatorname{Herwig}++$ response differences
 - Due to lack of stats, ATLAS flattens in η and CMS flattens in \textit{p}_{T}
- Other fragmentation uncertainties: uncorrelated
 - Procedures are not directly comparable, very different approaches

Flavour terms continued

- $\bullet\,$ ATLAS and CMS gluon modelling is strikingly similar at 8 ${\rm TeV}$
 - ATLAS uses a Global Sequential Calibration (GSC), exploits tracking
 - CMS uses particle flow, which naturally includes tracking
 - Level of agreement is still surprising
- This is additional motivation for the 100% correlation statement
 - Same shapes are observed within primary region of interest
 - Increases our confidence that the same effects are being covered

Other terms

Description	Components, CMS	Components, ATLAS	Corr. range
7. Pileup	PileupDataMC,	$N_{\rm PV}$ offset $(p_{\rm T}, \eta, N_{\rm PV}), \langle \mu \rangle$ offset $(p_{\rm T}, \eta, \langle \mu \rangle),$	0%
	PileupPt[Ref][BB][EC1][EC2][HF]	$p_{\rm T}$ term $(p_{\rm T}, \eta, N_{\rm PV}, \langle \mu \rangle)$, ρ topology $(p_{\rm T}, \eta)$	
8. High- <i>p</i> _T	Fragmentation	High- $p_{\rm T}$ ($p_{\rm T}$)	0%
9. Single-experiment terms	TimeEta, TimePt	Fast simulation closure (p_T, η) ,	0%
		punch-through $(p_T, \eta, N_{segments})$	

ATLAS and CMS now use similar jet-areas pileup suppression

- The method for evaluation uncertainties is completely different
- CMS averages over $N_{
 m PV}$ and $\langle \mu
 angle$, ATLAS parametrizes in $N_{
 m PV}$ and $\langle \mu
 angle$
- Pileup uncertainties are uncorrelated for these reasons and more
- High- $p_{\rm T}$ uncertainties are uncorrelated
 - Different methodologies and test beam energies are used
 - Experiments have different detector responses
- Single-experiment terms are all uncorrelated
 - There is no matching component to correlate across experiments

Overall combination procedure

Description	Components, CMS	Components, ATLAS	Corr. range
1a. Statistical <i>in situ</i> terms	AbsoluteStat, SinglePionHCAL, RelativeStat[FSR][EC2][HF]	 [11] Z-jet balance stat./meth. terms (p_T), [13] γ-jet balance stat./meth. terms (p_T), [10] multi-jet balance stat./meth. terms (p_T), η-intercalibration statistical term (p_T,η) 	0%
1b. Detector <i>in situ</i> terms	AbsoluteScale, SinglePionECAL, RelativeJER[EC1][EC2][HF], RelativePt[BB][EC1][EC2][HF]	Z -jet balance det. term, γ -jet balance det. term, [2] correlated Z / γ -jet balance det. terms ($p_{\rm T}$)	0%
2. Absolute balance modeling	AbsoluteMPFBias	 [7] Z-jet balance model + mixed terms (p_T), [4] y-jet balance model + mixed terms (p_T), [2] correlated Z/y-jet balance terms (p_T), [5] multi-jet balance model + mixed terms (p_T) 	0-50%
3. Relative balance modeling	RelativeFSR	η -intercalibration modeling (p_T, η)	50-100%
4. g-jet fragmentation	FlavorPureGluon	Flavor response (p_T, η)	100%
b-jet fragmentation	FlavorPureBottom	b -jet response ($p_{\rm T}$)	50-100%
6. Other fragmentation types	FlavorPureQuark, FlavorPureCharm	Flavor composition (p_T, η)	0%
7. Pileup	PileupDataMC, PileupPt[Ref][BB][EC1][EC2][HF]	N_{PV} offset $(p_{\text{T}}, \eta, N_{\text{PV}}), \langle \mu \rangle$ offset $(p_{\text{T}}, \eta, \langle \mu \rangle),$ p_{T} term $(p_{\text{T}}, \eta, N_{\text{PV}}, \langle \mu \rangle), \rho$ topology (p_{T}, η)	0%
8. High- <i>p</i> _T	Fragmentation	High- $p_{\rm T}$ ($p_{\rm T}$)	0%
9. Single-experiment terms	TimeEta, TimePt	Fast simulation closure (p_T, η) , punch-through $(p_T, \eta, N_{segments})$	0%

- There are nine uncertainty groups to correlate between experiments
 - Uncertainties should be merged within each experiment for each group
 - The nine resulting per-experiment components should be combined (pairwise across experiments) following the specified correlation range
 - These nine terms should not be merged before the combination

Limitations of the procedure

- The procedure described is useful, but not perfect
- Combinations must pay attention to the following limitations
 - 1. The correlation ranges are motivated, but the endpoints are arbitrary
 - If large differences are observed near endpoints when scanning over the range, extend the endpoint and perform more detailed studies
 - 2. Merging the components within a given group throws away shape info
 - Procedure is primarily aimed at single-observable results (top mass)
 - Limited uses when applied to multi-observable results (differential xsec)
- The procedure is expected to work well for most top combinations

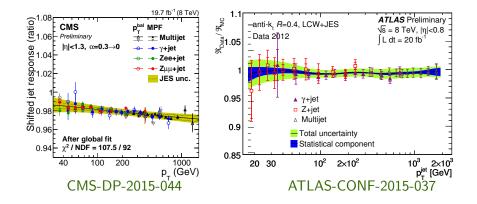
Potential for future gains

- Combinations are trivial if ATLAS and CMS do the same thing...
 - That is not the intent of the following suggestions
 - Combination potential must always be balanced by the need to maximize the single-experimental potential
- 1. Flavour uncertainties are large, work toward more similar procedures
 - The same parametrization should be used when stats are insufficient
- 2. *b*-jet fragmentation: investigate the use of *in situ* studies if possible
- 3. Work toward harmonized pileup uncertainty procedures
- 4. Very high- $p_{\rm T}$ uncertainty methods can be made more similar
- 5. The method used for combining absolute in situ terms can be unified

Summary of $8\,{\rm TeV}$ effort

- Updated procedure for ATLAS/CMS JES uncertainty combinations
 - The procedure is valid for single-observable measurements
 - Multi-observable measurements will encounter limitations
- Nine groups of components to combine have been identified
- A correlation range has been assigned to each component group
 - If large differences are observed near correlation range endpoints, expand the endpoint and study it in more detail
- A table mapping the full set of individual experimental uncertainty components to each group has been provided
- More details are available in the note

Looking forward to Run-II: 2015 (and beyond)



- $\bullet\,$ Methods used to derive $8\,{\rm TeV}$ uncertainties were finalized recently
 - $\bullet\,$ They are still mostly up to date with $13\,{\rm TeV}$ techniques
- \bullet 2015 is a busy year with tight deadlines and $<4\,{\rm fb}^{-1}$ of useable data
 - Some new techniques may appear, but it won't be the focus
 - $\bullet\,$ The main effort will go toward reproducing what was done at $8\,{\rm TeV}$
- $\bullet~{\rm The}~8\,{\rm TeV}$ combination recommendations are a good start
 - Further confirmation will need to wait until the 2015 JES is finalized
- The coming years should provide much more data and new ideas
 - Possible improvements have already been presented
 - Good starting point: produce more *b*-jet MC to resolve the unnecessary parametrization difference between ATLAS and CMS
- Lots of data is on the way time to get ready for the next stage!

Backup Material

In situ JES combination

