

ATLAS and CMS Top Quark Simulations

Benjamin Nachman

SLAC, Stanford University

November 18, 2015

LHC TOP WG Meeting *CERN*

(thank you to the WG contacts for help preparing this talk!)

Introduction

Run: 267638 Event: 193690558 2015-06-13 23:52:26 CEST 1) Overview of NLO MC setups -aMC@NLO+Pythia 8 -aMC@NLO+Herwig++ -Powheg+Pythia 6/8 -Powheg+Herwig++ -Sherpa

2) PDFs

3) Particle Level Definitions

NLO tī MC @ ATLAS and CMS

(more details in subsequent slides)

ME	Shower	CMS	ATLAS
aMC@NLO	Pythia 8	available and in general use (multiple flavors)	available , not in general use
aMC@NLO	Herwig++	available and in general use (multiple flavors)	available and in general use
Powheg	Pythia 6	deprecated	Nominal
Powheg	Pythia 8	Nominal	available , not in general use
Powheg	Herwig++	available and in general use	available and in general use
Sherpa 2.1	Sherpa	not available	available and in general use

flavors = LO+multileg+PS(MLM), NLO+PS(MC@NLO matching), NLO+multileg+PS(FxFx)

aMC@NLO+Pythia 8: ATLAS focus on the PS

Powheg+Pythia 8: CMS

-7-

Powheg+Pythia 8: ATLAS

Configuration

NLO+PS (Pythia 8 Main31 matching)

We observe that Powheg +Pythia 8 has too much jet activity

This is fixed by setting <u>pThard</u>=2

Now finalizing radiation variations (via A14) and will likely switch for MC samples for 2016

Early Run II ATLAS default is Powheg+Pythia 6

ATL-PHYS-PUB-2015-002

tī cross-section vs. jet multiplicity for jets above 25 GeV

Powheg+Herwig++

The ATLAS top MC team^a has dedicated a lot of time and effort to understand significant data/MC differences for this setup.

This saga has involved a lot of positive interactions between ATLAS and CMS^b as well as with the Herwig++ authors^c!

Problem	Solution
top p	momentum reshuffling parameter
y(tt)	CT10 -> NNPDF3.0
njets	shower scale
jet p	Not yet fixed!

Overview

^aHerwig++ efforts lead by Dominic Hirschbuehl ^bThank you Markus Seidel and Benedikt Maier ^cThank you Peter Richardson

Powheg+Herwig++ ME Kinematics

In general, ME distributions look (just as) good (as other generators)

One exception is the top p_T , but this has a known solution

Powheg+Herwig++ impact on the cross-section

CMS-TOP-15-003

(1510.05302)

Source	$\Delta \sigma_{t\bar{t}} (pb)$	$\Delta \sigma_{t\bar{t}} / \sigma_{t\bar{t}}$ (%)
Trigger efficiencies	34	4.4
Lepton efficiencies	26	3.4
Lepton energy scale	<1	≤ 0.1
Jet energy scale	12	1.5
Jet energy resolution	<1	≤ 0.1
Pileup	5.4	0.7
QCD scales	1.5	0.2
NLO generator of t ī signal	15	1.9
Modeling of tt signal	14	1.8
PDF	18	2.4
Single top tW background	13	1.7
VV background	3.5	0.5
Drell-Yan background	4.2	0.5
Nonprompt leptons background	7.9	1.0
Total systematic	FF	7.0
(w/o luminosity)	55	1.2
Integrated luminosity	92	12
Statistical uncertainty	60	7.8
Total	123	16

ATLAS-CONF-2015-033

Uncertainty	$\Delta \epsilon_{e\mu} / \epsilon_{e\mu}$	$\Delta C_b/C_b$	$\Delta \sigma / \sigma$
	(%)	(%)	(%)
Data statistics			6.0
NLO modelling	1.9	-0.3	2.2
hadronisation	-4.0	0.5	4.5
Initial/final state radiation	-1.1	0.1	1.2
Parton distribution functions	1.3	-	1.4
Single-top generator [*]	-	-	0.5
Single-top/ interference*	-	-	0.1
Single-top Wt cross-section	-	-	0.5
Diboson modelling [*]	-	-	0.1
Diboson cross-sections	-	-	0.0
Z+jets extrapolation	-	-	0.2
Electron energy scale/resolution	0.2	0.0	0.2
Electron identification	3.6	0.0	4.0
Electron isolation	1.0	-	1.1
Muon momentum scale/resolution	0.0	0.0	0.1
Muon identification	1.1	0.0	1.2
Muon isolation	1.0	-	1.1
Lepton trigger	1.3	0.0	1.3
Jet energy scale	-0.3	0.0	0.3
Jet energy resolution	-0.1	0.0	0.1
b-tagging	-	0.1	0.3
Misidentified leptons	-	-	1.3
Analysis systematics	6.4	0.6	7.3
Integrated luminosity	-	-	10.0
Total uncertainty	6.4	0.6	13.7

(Different analysis strategies, so don't a priori expect uncertainties to be of the same size)

Sherpa

How can we use Sherpa to complement our existing Powheg and aMC@NLO setups?

In ATLAS: Sherpa 2.1 tt+0,1j@NLO+2,3,4@LO

tī cross-section vs. 1st jet p_T

Samples exist in ATLAS but are used only for crosschecks and not currently for any final analysis results

Now for a few miscellaneous items.

http://www.bbc.co.uk/programmes/b00n7sf5

A quick note about PDFs

The change from CT10 -> NNPDF significantly improves the rapidity distribution (but unfortunately has little impact on the top p_T)

in **ATLAS**... Powheg+Pythia/Herwig and aMC@NLO+Herwig++ all use EvtGen as an after-burner. This makes the B-decay tables the same for all generators.

Single top

• Less good: nominals are not quite the same

tt+V

Particle-level definitions

The definitions for ATLAS and CMS seem to be converging, but there are still a few differences

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ParticleLevelTopDefinitions

	CMS	ATLAS	
Photons (for dressing)	anti-kt with R=0.1	ΔR<0.1*	
jets	exclude non-prompt neutrinos	include non-prompt neutrinos	A Part Part

Everything else is (surprisingly) consistent...aside from R=0.4 versus R=0.5 which is phasing out.

*ability to switch to the clustering algorithm also now implemented!

A common setup

... between ATLAS and CMS

Internal checks leading up to this workshop were really great!

Relied on Rivet routines...need more of that (also a common LHE file?)

... between experimentalists and theorists

Can we get HepMC events to make sure we have implemented the latest and great correctly?

(Markus's idea)

Overview

The h_{damp} story is a thing of the past and the momentum re-shuffling will be soon as well.

As we move to more complicated setups, we must continue to be vigilant in comparing setups to each other and to the data!

Conclusions

We have a extensive suite of generator setups and more in the pipeline for 2015 and beyond

It is crucial that we continue to compare the various models with the data:

-parton level

-particle level (final-state observables)

-extreme regions of phase space

This continues to be an interesting challenge that will allow us to probe the unexplored with confidence at 13 TeV!

The unexplored? (600 GeV large R jet with m_{jet} ~180 GeV and MET ~ 500 GeV)

Run: 271516 Event: 7786087 2015-07-13 09:38:38 CEST