Impact of jet fragmentation modelling on the jet energy and the top quark mass measurement using the ATLAS detector

Tancredi.Carli@cern.ch On behalf of ATLAS

Results presented in ATL-PHYS-PUB-2015-042

Modelling of final state of events with top quark pairs is a focus of the LHCtopWG

Modelling uncertainties are large/dominant in many top physics measurements

Often matter of physics judgement

→ Strong push by ATLAS/CMS to provide final state measurements defined by stable particles to constrain models and their parameters

Examples of recent particle-level measurements of ATLAS and CMS: jet multiplicities, jet veto, jet fragmentation, top kinematics (pseudo-top)

Final state Modelling uncertainties:

ISR/FSR Radiation (ren&fac scales, ME/PS matching) MC generator (NLO ME vs multi-leg) Choice of parton shower and hadronisaton Parton density functions Modelling of b-quark fragmentation

For more details see talk from May 2014

Parton shower and fragmentation uncertainty in top mass analysis

ATLAS

Comparison Powheg+Pythia and Powheg+Herwig covering:

- Choice of Parton shower:
- pt vs angular ordered parton shower
- Treatment of recoil, parton shower matching
- Fragmentation functions,
- hadronisation models (string vs cluster)
- underlying event

CMS:

Pythia/Herwig comparison only cross-check Uncertainty by varying parameter effect-by-effect:

- Comparison of Pythia/Herwig++ jet response per parton flavour (flavour response systematics in JES)
- String vs cluster model from Sherpa
- Varying b-hadron fragmentation
- Varying semi-lepton branching ratios

Fit type	Channel	$\Delta m_{\rm top}^{\rm tot}$	$\Delta m_{ m top}^{ m stat}$	$\Delta m_{ m top}^{ m had}$
Two-dimensional analysis:				
	<i>l</i> +jets [13]	0.89%	0.20%	0.75%
Three-dimensional analysis:				
[13] ATLAS-CONF-2013-046	<i>l</i> +jets [13]	0.89%	0.43%	0.15%
[2] EPJ C75 (2015) 330	l+jets [2]	0.79%	0.43%	0.10%

To which extend there is double counting with other uncertainties ?

CMS numbers for Pythia/Herwig comparison given in LHC and world combination, but not available for latest measurement

Strategy to evaluate double counting with jet calibration

Jet calibration refers to particle jets Top mass refers to partons in the hard scattering process Define: Reconstructed detector response to particle jets

$$\mathcal{R}^{\text{particle}} = \frac{p_{\text{T}}^{\text{reco}}}{p_{\text{T}}^{\text{particle}}}.$$

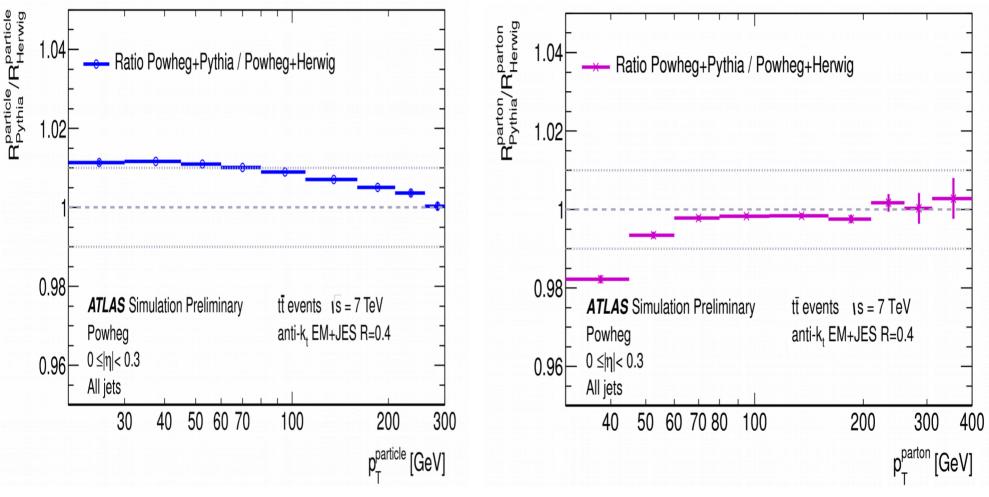
Reconstructed detector response to partons:

$$\mathcal{R}^{\text{parton}} = \frac{p_{\text{T}}^{\text{reco}}}{p_{\text{T}}^{\text{parton}}}$$

Strategy to evaluate double counting of Pythia/Herwig uncertainty included in JES and physics analysis:

Recalibrate Powheg+Pythia sample to match jet response in Herwig

- 1) inclusive in jet flavour (remove JES double-counting)
- 2) flavour-by-flavour using parton matching (remove JES and bJES double counting) (higher energetic parton within dR<0.4)


Study effect in ATLAS top mass analysis (EPJ C75 (2015) 330, I+jet 7 TeV)

4

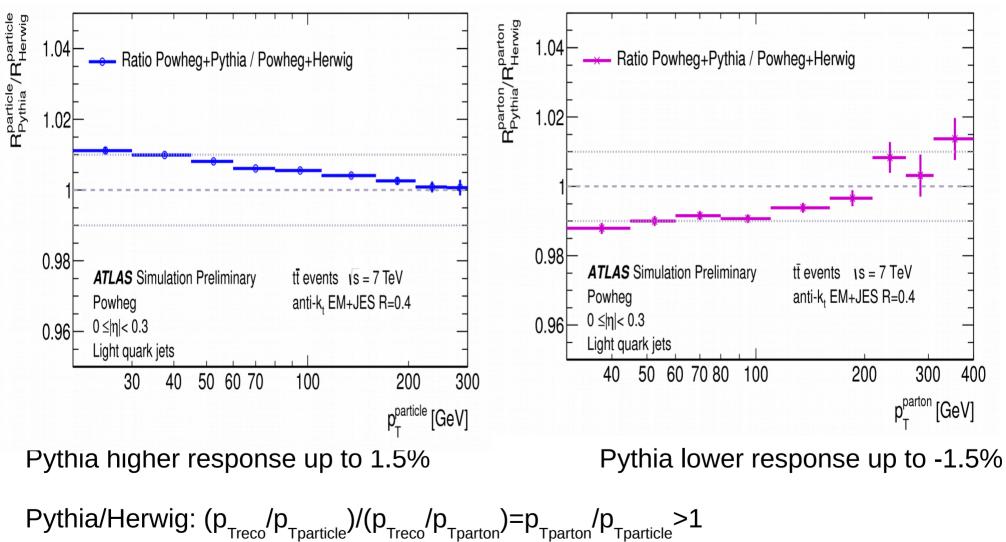
particle

Inclusive jets: Jet response differences at particle- and parton-level

Particle-level

Parton-level

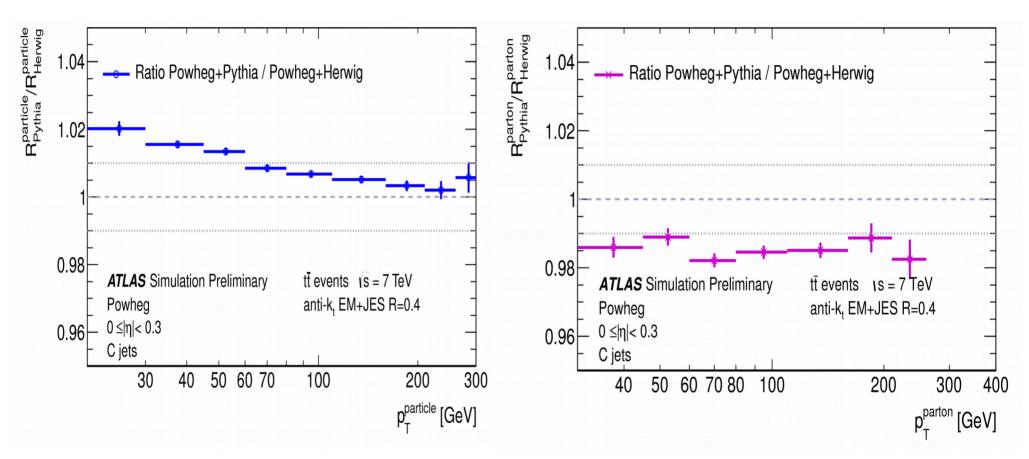
Pythia higher response up to 1.0%


Pythia lower response up to -2.0%

Detector/particle detector/parton opposite directions !

Light-quarks: Jet response differences at particle- and parton-level

Particle-level

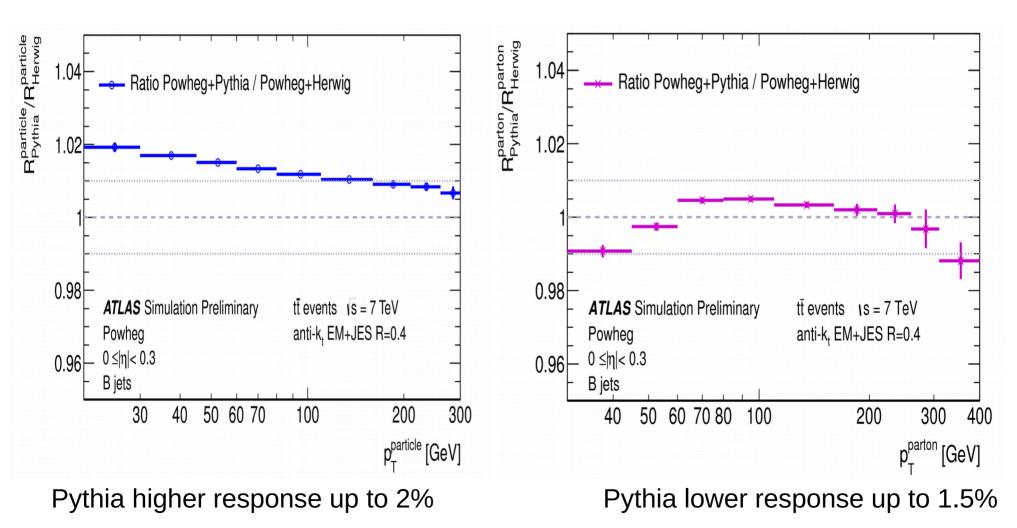

Parton-level

expect higher W mass for Herwig particle-level

Charm-quarks: Jet response differences at particle- and parton-level

Particle-level

Pythia higher response up to 2%


Pythia lower response up to -1.5%

Detector/particle and detector/parton opposite directions !

Bottom-quarks: Jet response differences at particle- and parton-level

Particle-level

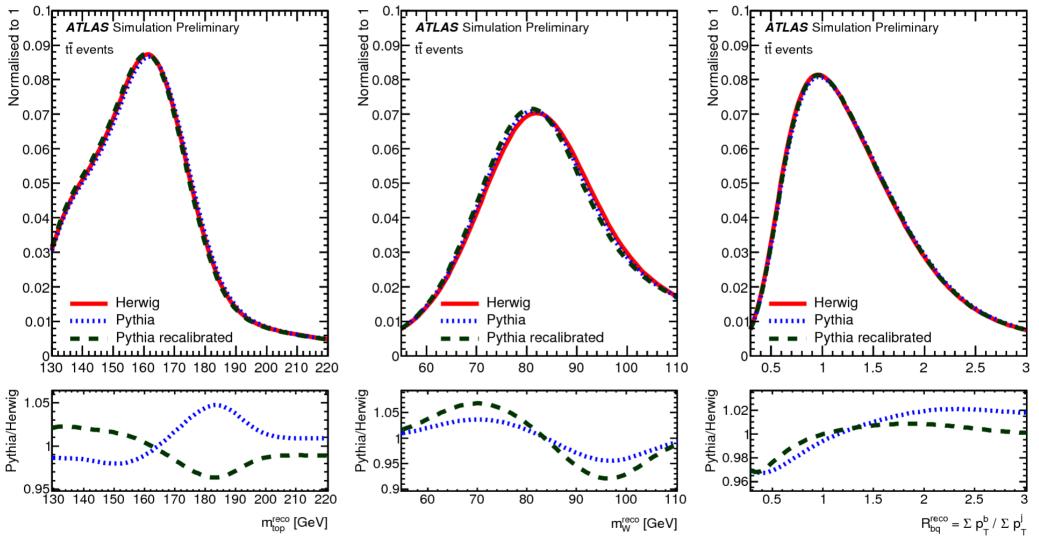
Parton-level

Similar picture for all jet flavours

Effect of re-calibration procedure is tested with recent ATLAS top mass measurement EPJ C 75 (2015) 7 7 TeV 2011 data using the I+jet channel

Use kinematic likelihood fit to reconstruct W mass (M_{ii}) and top mass (M_{iib})

One, two or three parameter unbinned likelihood fit:


- 1) Physical fit parameter is m
- 2) The W mass distribution is used to constraint the jet scale factor (JSF) that rescales all jet 4-momenta
- 3) The ratio of the p_{τ} of b-jet and the light-quark jets is used to constrain the b-jet scale

 $\mathcal{R}_{bq} = \frac{p_{T}^{b_{had}} + p_{T}^{b_{lep}}}{p_{T}^{q_{1}} + p_{T}^{q_{2}}}$

Templates of three observables (m_{top} , JSF, R_{bq}) are built and fit to the data

Jet re-calibration effect on sample mass fit

Results of best fit to m_{top} , JSF, R_{ba} to the template functions to the MC samples for the systmatic uncertainty evaluation

After jet re-calibration difference between Pythia/Herwig remain The W mass in the re-calibrated Pythia shifted further away from Herwig

-	dim	jet calibration type	$\frac{\Delta m_{\rm top}^{\rm had^{\rm new}}}{\Delta m_{\rm top}^{\rm had^{\rm standard}}}$	$\frac{\Delta JSF^{new}}{\Delta JSF^{standard}}$	$\frac{\Delta bJSF^{new}}{\Delta bJSF^{standard}}$
m _{top} 1	1	inclusive re-calibration	-0.6	-	-
		flavour re-calibration	-1.0	-	-
m _{top,} JSF	2	inclusive re-calibration	1.0	2.0	-
		flavour re-calibration	0.7	1.8	-
m _{top,} JSF, R _{qb}	3	inclusive re-calibration	1.2	2.0	1.0
	b	flavour re-calibration	1.3	1.8	0.5

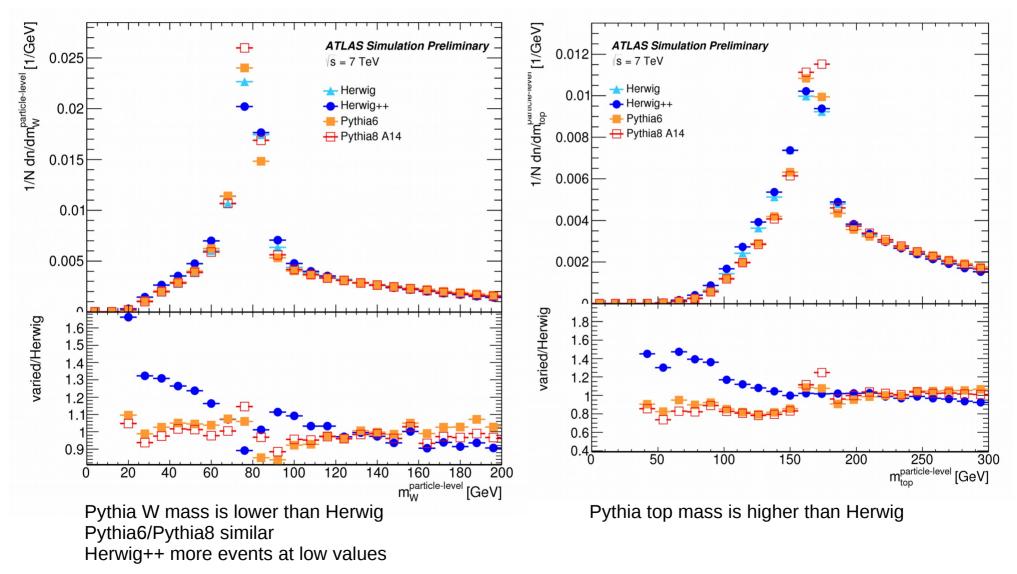
1-dim fit: Uncertainty changes sign after recalibration

→ effects related to jet calibration acting opposite to

effects related to parton-->particle jet

2/3-dim fit: small change in Δm_{top} , but JSF doubles

re-calibration does not bring JSF closer together \rightarrow not a JES effect (related to W mass difference after jet re-calibration)


3-dim fit: bJSF decreases for flavour-dependent jet re-calibration, but $\sim \Delta m_{top}$

bJSF sensitive to hadronisation effects, but overall effect is small

 Δm_{top} =Pythia-Herwig

Particle-level study

Using simple top pair kinematic reconstruction based on stable particles (Pseudo-top) Study effect on reconstructed top and W mass

Double-counting of parton shower and fragmentation modeling systematics investigated by recalibrating Pythia jet response (detector/particle) to Herwig.

Double-counting between direct comparison of Powheg+Pythia and Powheg+Herwig for modelling systematics and Pythia/Herwig jet response differences is small in ATLAS I+jet analysis based in 2011 7 TeV data.

Effect of changing parton shower and hadronisation model extends beyond changes in the jet energy scale in the standard ATLAS analysis.

Simple study using particle-level observables: Top and W mass obtained from combination of particle-level jet, leptons and missing momentum shows differences between MC models.

More dedicated studies are needed to establish the exact behaviour of these uncertainties in precision measurements with top quarks.

Hadronisation systematics

CMS 2011

b-JES:

b-jet response in between light-quark/gluon response Therefore take Pythia/Herwig++ for light quark/gluons as b-jet uncertainty

CMS 2014

b-JES

Compare Pythia/Herwig++ for each jet flavour For light-quarks, gluons and b-quark uncertainty is evaluated separately and added in quadrature

b-fragmentation

Bowler-Lund fragmentation re-tuned to ALEPH and DELPHI data Difference between this retune and Pythia Z2 tune is uncertainty

Semi-leptonic B hadron decays

Semi-leptonic branching varied by -0.45 and +0.77% for B° and B^{+} Hadrons (from PDG)

Quoted separately and not included in final result MC@NLO+Herwig vs Powheg+Pythia Z2 tune

- → approach avoids possible double counting when changing pythia/herwig
 - detector response on particle jet
 - b-fragmenation
 - p_ modelling

ATLAS

b-JES

- Dedicated b-JES based on MC Pythia/Herwig b-fragmentation function Pythia nominal/tuned Bowler-Lund
 - (tuned to LEP data)
- Validation with data in situ (limited precision)

Parton shower and fragmentation effects on Ttbar event topology exchange Pythia/Herwig to cover:

- -choice of parton shower
- -hadronisation effect
- (string vs cluster)
- -underlying event
- -b-fragmentation
- -B-Hadron decay tables
- → possible double counting with other systematics:
 - effect of detector response on particle jet -> detector jet
 - underlying event
 - b-fragmentation

Evaluation of Ttbar modelling systematics

CMS

Radiation

Renormalisation and factorisation scale changed by factor of 2 in Madgraph+Pythia

ME-PS matching threshold in Madgraph varied from from default 20 GeV by factor of 2

• MC generator Dilepton: MadGraph vs Powheg

For 2014 I+jets:

- MadGraph vs Powheg
- p_{Ttop} reweighting
- PDF Based on CTEQ6,6 For 2014 measurement: PDF4LHC prescription
- Choice parton shower model and fragmentation Included in jet response uncertainty b-fragmentation modelling varied

ATLAS

 Radiation ISR/FSR PS starting scale changed by factor of 2 in ACERMC+Pythia

Radiation systematics based on ALPGEN not yet used in top mass analysis

- MC generator MC@NLO+Herwig vs Powheg+Herwig (very different jet multiplicities, Alpgen does not contain top width)
- PDF
 based on CT10
- Choice parton shower model and fragmentation Also included in jet response uncertainty, but would like to cover other effects (parton->jet) evaluate, e.g. Powheg+Pythia vs Powheg+Herwig