

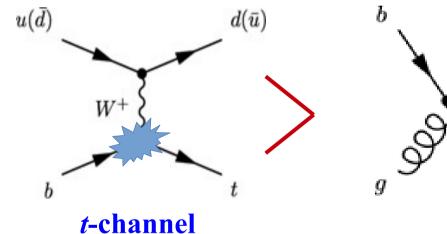
Single top plans for combinations

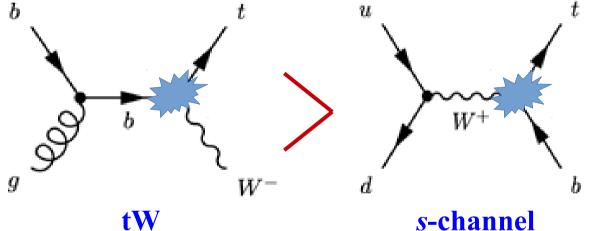
A. Jafari, O. Iorio, R. Schwienhorst

LHC Top WG Open Meeting 19 – 20 November 2015

Outline

- Introduction
- Possibilities for cross section combinations
 - t-channel
 - tW
 - s-channel
- Combination of the V_{tb} CKM matrix element


Single-top, what and why?


Top quark production at LHC

Dominant: in pair via QCD

Sub-dominant: singly through EWK

Single-top is sensitive to new physics

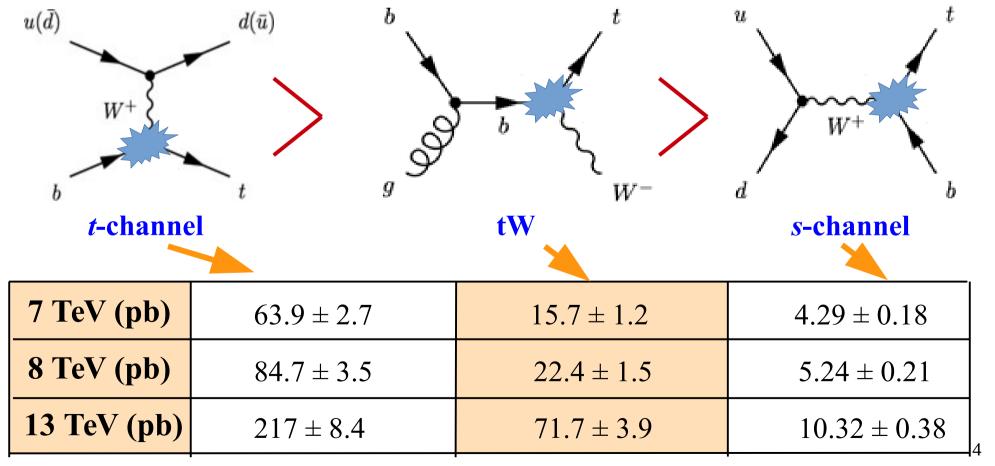
- FCNC, anomalous tWb couplings
- New particles, W', H[±]

Background in searches

• Higgs, SUSY

Characteristic scenario for SM measurements

• Top polarization, W helicity, top mass, $|V_{tb}|$

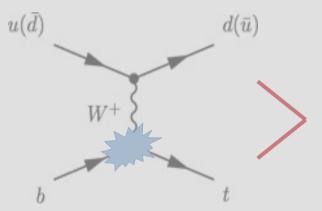

Single-top, what and why?

Top quark production at LHC

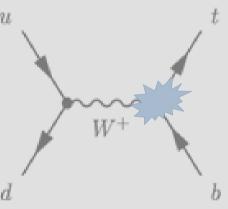
Dominant: in pair via QCD

Sub-dominant: singly through EWK

NLO theory calculations (scale+PDF+ $\alpha_{\rm s}$)


Single-top, what and why?


Top quark production at LHC


Dominant: in pair via QCD

Sub-dominant: singly through EWK

t-channel

tW

s-channel

7 Te	V (p	b)
------	------	------------

 63.9 ± 2.7

 15.7 ± 1.2

 4.29 ± 0.18

8 TeV (pb)

 84.7 ± 3.5

 22.4 ± 1.5


 5.24 ± 0.21

Detailed studies

Observation

Evidence

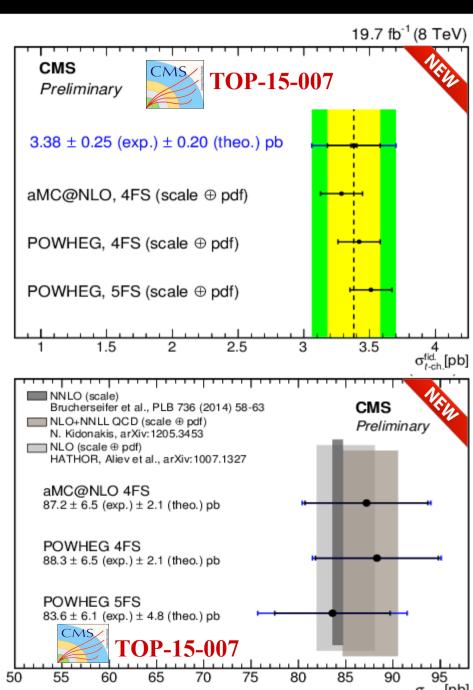
LHC Single-top cross sections

t-channel: detailed studies

Cross section

- Precise in the full phase space
- Comparison with theory in the fiducial volume
 - Validate and compare different models
- Extracting the CKM matrix element $|V_{tb}|$

Covered here ...


Other properties

- Precise measurements of angular properties
- Sensitive to tWb anomalous couplings

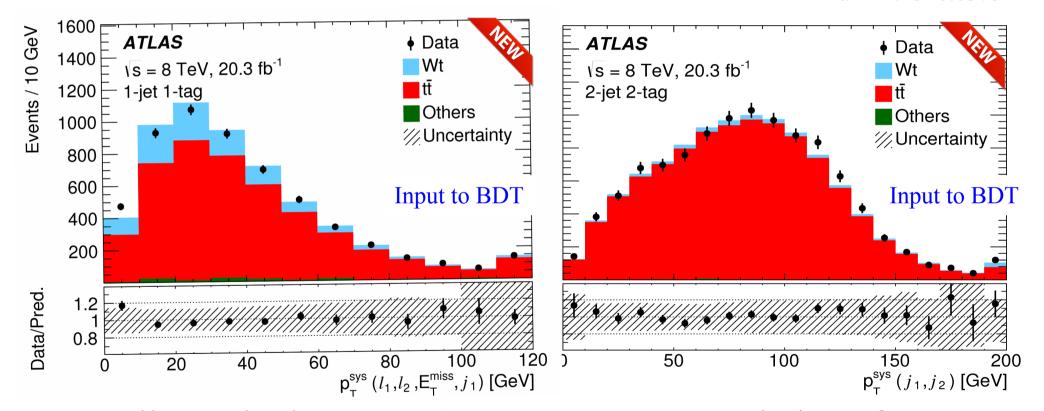
See the talk by Nuno Castro for ideas on combinations ...

t-channel: $\sigma_{\text{t-ch}}$ in fiducial volume

- Based on JHEP 06 (2014) 090
- First look into 4FS vs. 5FS modeling
- For fiducial measurement
 - Particle level definitions along with LHCtopWG recommendations
- Corresponding analysis in ATLAS is ATLAS-CONF-2014-007
- Paper in preparation

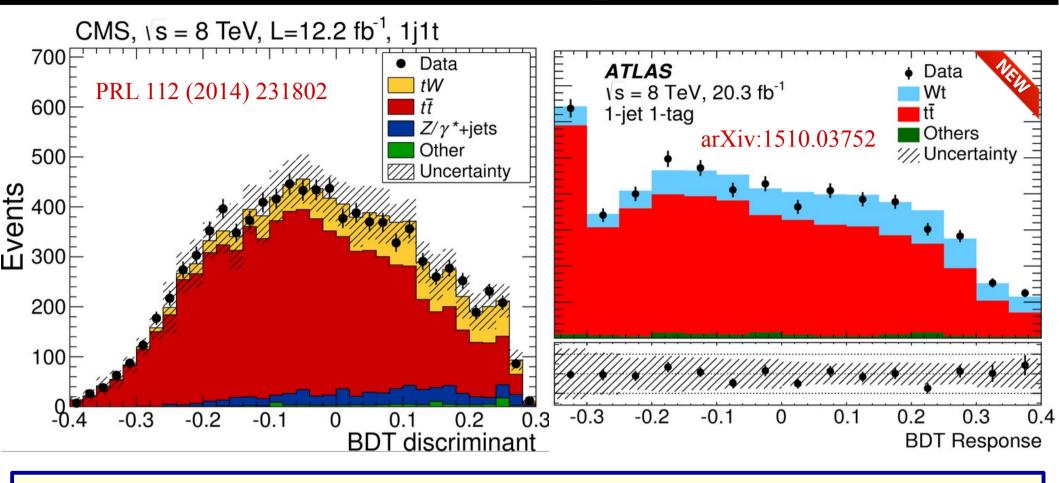
t-channel: $\sigma_{\text{t-ch}}$ in fiducial volume

• Based on JHEP 06 (2014) 090


Combination plan:

- *Inclusive* measurements combined using BLUE once the corresponding papers are ready
- Combination of the fiducial numbers, if desired, needs more effort:
 - Common definitions for particle level objects → LHCtopWG recommendations
 - See backup for details on different definitions
 - Aiming to use the recommended ones for Run II
 - Differences in fiducial volume definitions
 - Refining the related systematics uncertainties

50 55 60 65 70 75 80 85 90 95 σ_{tch}[pb

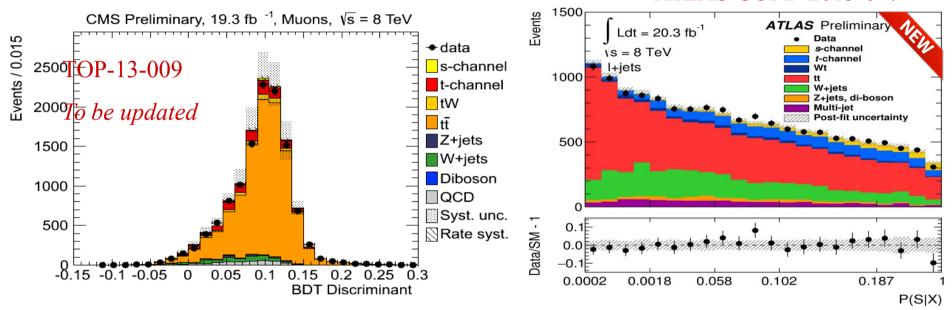

tW: new ATLAS result, 7.7σ significance

- ATLAS has also observed the tW at 8 TeV
 - Simultaneous fit on BDT output in multiple regions with different jet and b-jet multiplicities arXiv:1510.03752

- Follows the latest LHCtopWG recommendations for systematics
- Measurement also in the fiducial volume

tW: Observed in both experiments

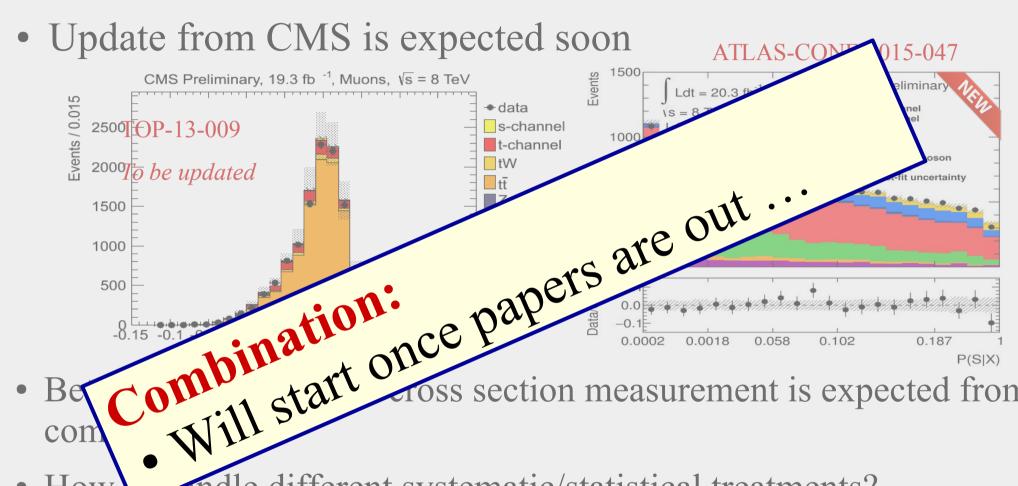
Combination of the cross sections:


- With the CMS observation paper, using BLUE
- Work has already started to understand the correlations with ATLAS new systematic treatment

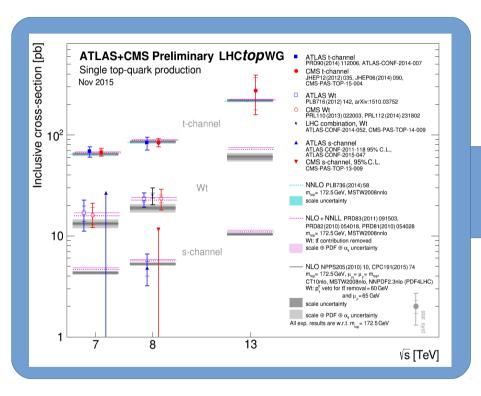
s-channel: evidence seen by ATLAS

• ATLAS has seen an evidence recently

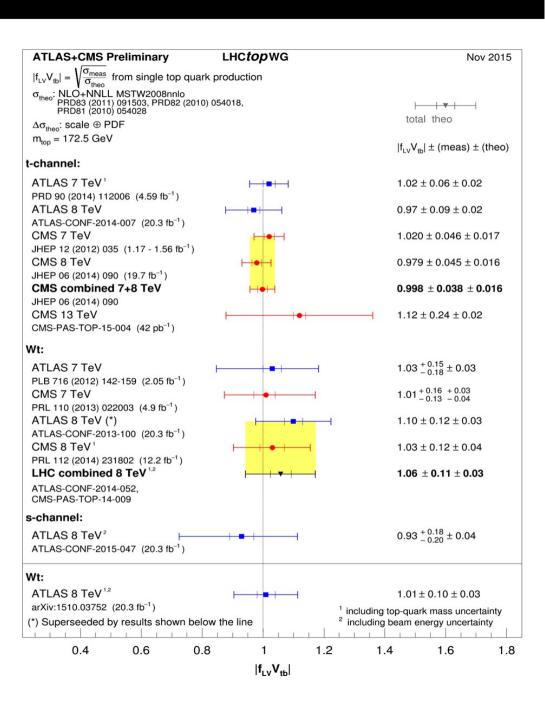
• Update from CMS is expected soon


ATLAS-CONF-2015-047

- Better significance and cross section measurement is expected from combination
- How to handle different systematic/statistical treatments?
 - Combining likelihoods? Different statistical frameworks ...
 - Marginalization of different systematics can lead to different 12 significances


s-channel: evidence seen by ATLAS

ATLAS has seen an evidence recently



- oss section measurement is expected from
- ndle different systematic/statistical treatments?
 - Combining likelihoods? Different statistical frameworks ...
 - Marginalization of different systematics can lead to different 13 significances

Vtb from single-top

$$|V_{tb}| = \sqrt{\frac{\sigma_{\text{exp.}}}{\sigma_{\text{theo.}}}}$$

Vtb: assumptions and alternatives

$$|V_{tb}| = \sqrt{\frac{\sigma_{exp.}}{\sigma_{theo.}}}$$

$$|V_{tb}| \gg |V_{td}|, |V_{ts}|$$

- Assuming top quarks decay only to Wb
 - Neglecting V_{td}, V_{ts} in the production
- Not sensitive to couplings with different kinematics
- Alternative methods are possible (see e.g. here)
 - Involving e.g $R = BR(t \rightarrow bW)/BR(t \rightarrow qW)$ from ttbar
- Combination becomes complicated + other ingredients are needed → start with the simplest method
- Intend to use BLUE to combine $|V_{tb}|^2$

Vtb: ingredients for the uncertainty

$$|V_{tb}| = \sqrt{\frac{\sigma_{exp.}}{\sigma_{theo.}}}$$
 $\Delta V_{tb} = \dots$

- σ_{exp} : all single-top channels measurements could go in
 - Expect dominant contribution from *t*-channel
- theo.: theory uncertainty is not negligible
 - Which theory cross-section for t-channel?
 The most precise (NNLO) or the NLO with all needed uncertainties available?
 - What uncertainties to add?PDF, Scale, top mass, collider energy, b-mass?

Vtb: steps for the combination

Agree on few items

- What cross section to use
- What uncertainties? Top and bottom quark mass? ...

Consider all channels (even cross energy)

Less precise results would have less impact

Consider other methods

- Once the previous step is established
- Expand the interpretation: carefully add R in the measurement?

Conclusions

- Combination of single-top cross sections and V_{tb} still has some road ahead
- *t*-channel combination is waiting for a few updates from the experiments
- tW combination has already started
- s-channel combination is waiting for updates from the experiments, will need also some aligning of uncertainties/statistical methods used.
- V_{tb} combination can be straightforward as a first step, and then get increasingly more complicated by adding in more channels and different assumptions

BACKUP

CMS vs. ATLAS in fiducial t-channel

Leptons:

CMS & ATLAS: dressed leptons (LHCtopWG) from W decay

MET:

CMS: does not use particle-level MET

ATLAS: vector sum of all neutrino's from W in the event

Jet:

CMS & ATLAS: clustering all particles but prompt lepton/photon/neutrino with anti-kT algo.

B-tagging:

CMS: ghost matching

ATLAS: B-hadron matching (not clear to me how)

CMS vs. ATLAS in fiducial t-channel

Nominal results

CMS

Generated and extrapolated by aMCatNLO

		•
Kinematic cuts at detector level	Cuts at particle level	number required
$p_{\rm T} > 26$, $ \eta < 2.1$, $I_{\rm rel} < 0.12$	$p_{\rm T} > 30$, $ \eta < 2.4$	exactly 1 (or 1 Ele)
$ E_{\rm T}>$ 30 , $ \eta <2.4$, $I_{\rm rel}<0.1$	$p_{\rm T} > 30$, $ \eta < 2.4$	exactly 1 (or 1 Mu)
$p_{ m T} > 10$, $ \eta < 2.4$, $I_{ m rel} < 0.2$	-	0
$ E_{ m T}>$ 20 , $ \eta <$ 2.4 , $I_{ m rel}<$ 0.15	-	0
$p_{ m T} > 40$, $ \eta < 4.7$	$p_{\rm T} > 40$, $ \eta < 5.0$	exactly 2
1 jet is tagged	$ \eta < 2.4$, b-hadron	exactly 1
$m_{\rm T} > 50$	-	-
E _T > 45	-	-
	$p_{ m T} > 26$, $ \eta < 2.1$, $I_{ m rel} < 0.12$ $E_{ m T} > 30$, $ \eta < 2.4$, $I_{ m rel} < 0.1$ $p_{ m T} > 10$, $ \eta < 2.4$, $I_{ m rel} < 0.2$ $E_{ m T} > 20$, $ \eta < 2.4$, $I_{ m rel} < 0.15$ $p_{ m T} > 40$, $ \eta < 4.7$ 1 jet is tagged $m_{ m T} > 50$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

ATLAS

Object	Cut
Electrons	$p_{\mathrm{T}} > 25 \mathrm{GeV}$ and $ \eta < 2.5$
Muons	$p_{\mathrm{T}} > 25 \mathrm{GeV}$ and $ \eta < 2.5$
Jets	$p_{\mathrm{T}} > 30 \mathrm{GeV}$ and $ \eta < 4.5$
	$p_{\rm T} > 35$ GeV, if $2.75 < \eta < 3.5$
Lepton (ℓ) , Jets (j_i)	$\Delta R(\ell, j_i) > 0.4$
$E_{ m T}^{ m miss}$	$E_{\rm T}^{\rm miss} > 30~{\rm GeV}$
Transverse W-boson mass	$m_{\rm T}(W) > 50~{\rm GeV}$
Lepton (ℓ), jet with the highest $p_{\mathrm{T}}\left(j_{1}\right)$	$p_{\rm T}(\ell) > 40 {\rm GeV} \left(1 - \frac{\pi - \Delta \phi(j_1, \ell) }{\pi - 1} \right)$

Nominal results

Generated by AcerMC ($\mu = m_t$)

Extrapolated by aMCatNLO

CMS vs. ATLAS in tW

Theory modeling uncertainties

	ATLAS	CMS
ISR/FSR	ISR/FSR for Wt and ttbar	Renormalization/ factorization scale for Wt and ttbar
Wt generator and PS	PowHeg, MC@NLO with Pythia, Herwig	
Ttbar generator and PS	PowHeg, MC@NLO with Pythia, Herwig	ME/PS matching threshold and scale variation
PDF	PDF4LHC	PDF4LHC
DR/DS	DR/DS	DR/DS