Ideas for combinations of measurements constraining the Wtb vertex

Nuno Castro

nfcastro@lip.pt

Universidade do Minho Escola de Ciências

LHC TOP WG meeting, 18th Nov 2015

IF/00050/2013, CERN/FIS-NUC/0005/2015

The Wtb vertex

Effective Wtb vertex from dim-6 operators

$$\mathcal{L} = -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} (V_L P_L + V_R P_R) t W_{\mu}^{-}$$
$$-\frac{g}{\sqrt{2}} \bar{b} \frac{i\sigma^{\mu\nu} q_{\nu}}{M_W} (g_L P_L + g_R P_R) t W_{\mu}^{-} + \text{h.c.}$$
$$V_L \equiv V_{tb} \sim 1 \text{ (within SM)}$$
$$V_R, g_R, g_L \Rightarrow \text{ anomalous couplings}$$
[EPJC50 (2007) 519, NPB804 (2008) 160, NPB812 (2009) 181]

How to probe anomalous couplings in the *Wtb* vertex?

- indirect limits from B-physics (IST model dependent!)
- single t production: cross-section and angular distibutions

• $t\bar{t}$ production: angular distributions of t decays

The Wtb vertex

gauge-invariant effective operators

 $\mathcal{L}=\mathcal{L}_4+\mathcal{L}_6+\dots$

where

 $\mathcal{L}_4 = \mathcal{L}_{SM} \longrightarrow SM \text{ Lagrangian}$ $\mathcal{L}_6 = \sum_x \frac{\alpha_x}{\Lambda^2} O_x \longrightarrow O_x \text{ gauge-invariant building blocks}$

Parameterise effects of new physics at scale $\Lambda > v$

The following dim-6 operators are relevant to the Wtb vertex:

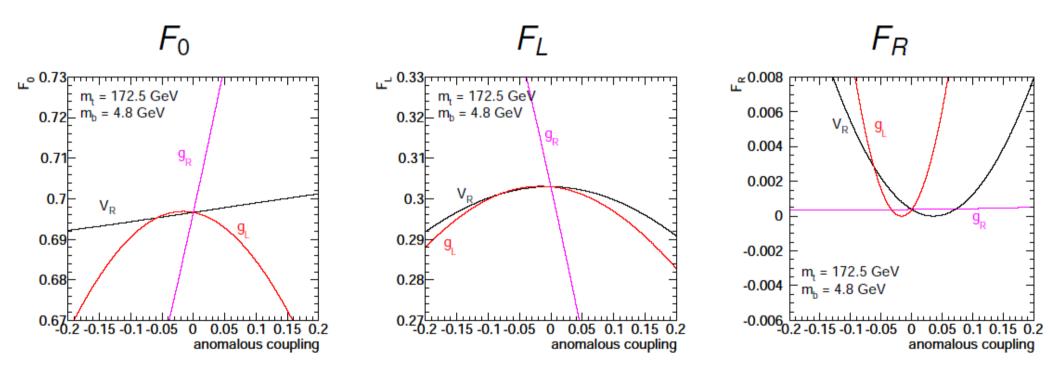
$$\delta V_L = \left(C_{\phi q}^{(3)*} + \frac{g}{2} \operatorname{Re} C_{qW} \right) \frac{v^2}{\Lambda^2} , \qquad \delta g_L = \sqrt{2} C_{dW}^* \frac{v^2}{\Lambda^2} ,$$

$$\delta V_R = \frac{1}{2} C_{\phi \phi}^* \frac{v^2}{\Lambda^2} , \qquad \qquad \delta g_R = \sqrt{2} C_{uW} \frac{v^2}{\Lambda^2} ,$$

$$\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}\cos\theta_{\ell}^{*}} = \frac{3}{2}\left[F_{0}\left(\frac{\sin\theta_{\ell}^{*}}{\sqrt{2}}\right)^{2} + F_{L}\left(\frac{1-\cos\theta_{\ell}^{*}}{2}\right)^{2} + F_{R}\left(\frac{1+\cos\theta_{\ell}^{*}}{2}\right)^{2}\right]$$

$$leptonic W$$

$$rest frame$$


$$t \longrightarrow W \qquad \theta_{\ell b} \qquad \theta_{\ell}^{*} = \pi - \theta_{\ell b}$$

$$V$$

[EPJC50 (2007) 519]

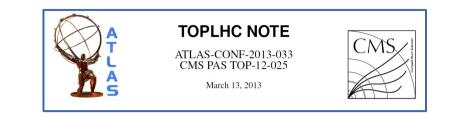
anomalous couplings \Rightarrow deviations in *W* helicity fractions

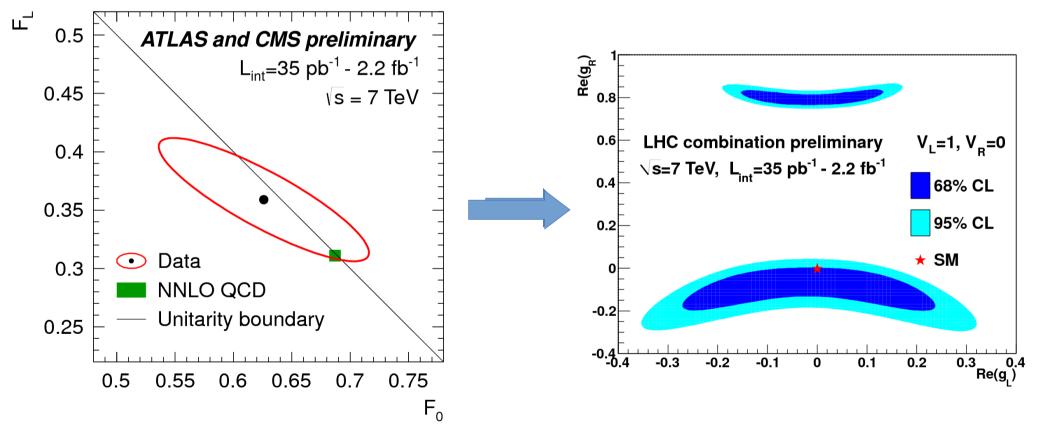
Measurement	F_0	F_L	F_R
ATLAS 2010 (single lepton) [Alj2010]	$0.652 \pm 0.134 \pm 0.092$	$0.359 \pm 0.088 \pm 0.056$	$-0.011 \pm 0.060 \pm 0.046$
ATLAS 2011 (single lepton) [Alj2011]	$0.642 \pm 0.030 \pm 0.071$	$0.344 \pm 0.020 \pm 0.042$	$0.014 \pm 0.014 \pm 0.055$
ATLAS 2011 (dilepton) [Adil2011]	$0.744 \pm 0.050 \pm 0.087$	$0.276 \pm 0.031 \pm 0.051$	$-0.020 \pm 0.026 \pm 0.065$
CMS 2011 (single lepton) [Clj2011]	$0.567 \pm 0.074 \pm 0.048$	$0.393 \pm 0.045 \pm 0.024$	$0.040 \pm 0.035 \pm 0.043$

TOPLHC NOTE

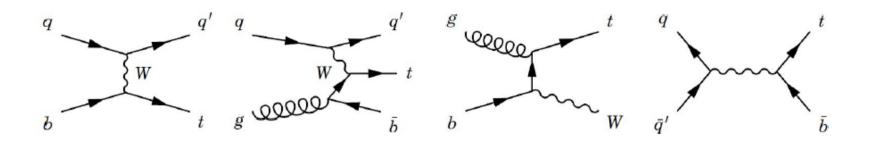
ATLAS-CONF-2013-033 CMS PAS TOP-12-025 March 13, 2013

BLUE combination:

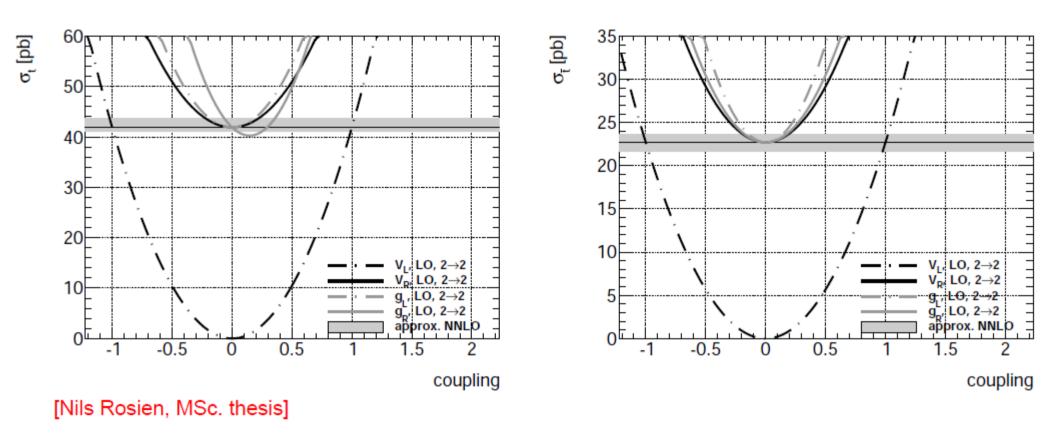

Measurement		Alj2010	Alj2011	Adi12011	Clj2011
	Fraction	F_0	F_0	F_0	F_0
Alj2010	F_0	+1	$\rho_{\exp}(F_0, F_0)$	$\rho_{\exp}(F_0, F_0)$	$\rho_{\text{LHC}}(F_0, F_0)$
Alj2011	F_0	$\rho_{\exp}(F_0, F_0)$	+1	$\rho_{\exp}(F_0, F_0)$	$\rho_{\text{LHC}}(F_0, F_0)$
Adil2011	F_0	$\rho_{\exp}(F_0, F_0)$	$\rho_{\exp}(F_0, F_0)$	+1	$\rho_{\text{LHC}}(F_0, F_0)$
Clj2011	F_0	$\rho_{\rm LHC}(F_0,F_0)$	$\rho_{\text{LHC}}(F_0, F_0)$	$\rho_{\text{LHC}}(F_0, F_0)$	+1
Alj2010	F_L	$\rho_{\text{ATLAS}}(F_0, F_L)$	$-\rho_{\exp}(F_0, F_0)$	$-\rho_{\exp}(F_0, F_0)$	$-\rho_{\text{LHC}}(F_0, F_0)$
Alj2011	F_L	$-\rho_{\exp}(F_0, F_0)$	$\rho_{\text{ATLAS}}(F_0, F_L)$	$-\rho_{\exp}(F_0, F_0)$	$-\rho_{\text{LHC}}(F_0, F_0)$
Adil2011	F_L	$-\rho_{\exp}(F_0, F_0)$	$-\rho_{\exp}(F_0, F_0)$	$\rho_{\text{ATLAS}}(F_0, F_L)$	$-\rho_{\text{LHC}}(F_0, F_0)$
Clj2011	F_L	$-\rho_{\text{LHC}}(F_0, F_0)$	$-\rho_{\text{LHC}}(F_0, F_0)$	$-\rho_{\text{LHC}}(F_0, F_0)$	$\rho_{\text{CMS}}(F_0, F_L)$


	Coefficie	ent [%]
Measurement	w_{F_0}	w_{F_L}
F_0 ATLAS 2010 (single lepton)	12.2	7.4
F_L ATLAS 2010 (single lepton)	19.0	11.6
F_0 ATLAS 2011 (single lepton)	39.5	- 8.4
F_L ATLAS 2011 (single lepton)	-16.0	35.4
F_0 ATLAS 2011 (dilepton)	13.0	2.8
F_L ATLAS 2011 (dilepton)	4.9	15.2
F_0 CMS 2011 (single lepton)	35.4	- 1.8
F_L CMS 2011 (single lepton)	- 7.9	37.8
Total weight:	100.0	100.0

	LHC combination		
Category	F_0	F_L	
Detector modeling			
Detector model	0.019	0.011	
Jet energy scale	0.020	0.012	
Luminosity and pile-up	0.006	0.003	
Signal and background mode	eling		
Monte Carlo	0.012	0.008	
Radiation	0.024	0.012	
Top-quark mass	0.019	0.012	
PDF	0.008	0.004	
Background (MC QCD)	0.003	0.001	
Background (MC <i>W</i> + jets)	0.007	0.002	
Background (MC other)	0.011	0.006	
Background (data-driven)	0.013	0.008	
Method-specific uncertaintie	S		
Method	0.008	0.005	
Total uncertainties			
Total systematic uncertainty	0.048	0.028	
Statistical uncertainty	0.034	0.021	
Total uncertainty	0.059	0.035	

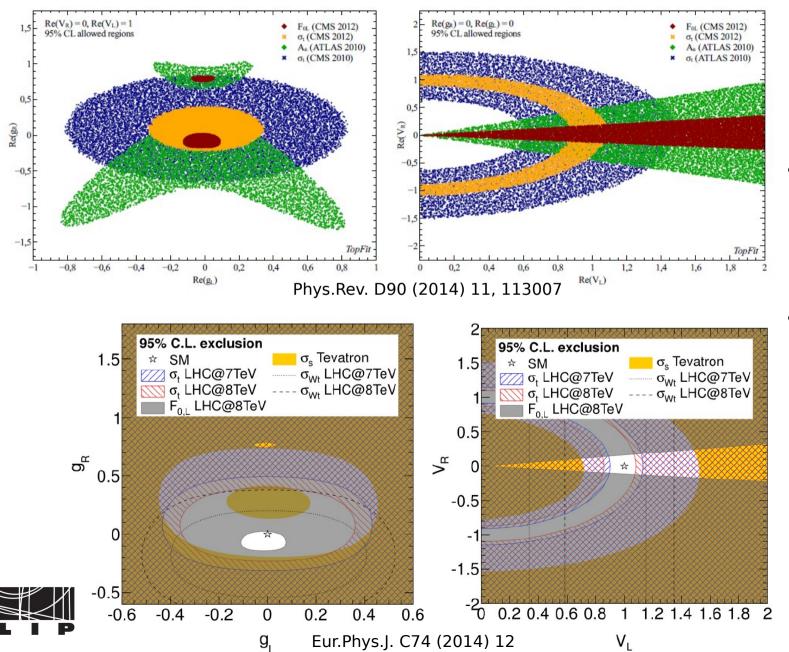

6

Single top production cross-section



 $\sigma = \sigma_{\text{SM}} \left(V_L^2 + \kappa^{V_R} V_R^2 + \kappa^{V_L V_R} V_L V_R + \kappa^{g_L} g_L^2 + \kappa^{g_R} g_R^2 + \kappa^{g_L g_R} g_L g_R + \dots \right)$

- the κ factors determine the dependence on anomalous couplings
- the presence of anomalous couplings affect not only the cross-section but the event kinematics (effect on the signal efficiency which has to be determined at the analysis level)


Single top production cross-section

- Notice the difference in the dependence of $\mathbf{g}_{_{\mathrm{R}}}$ for top and anti-top production

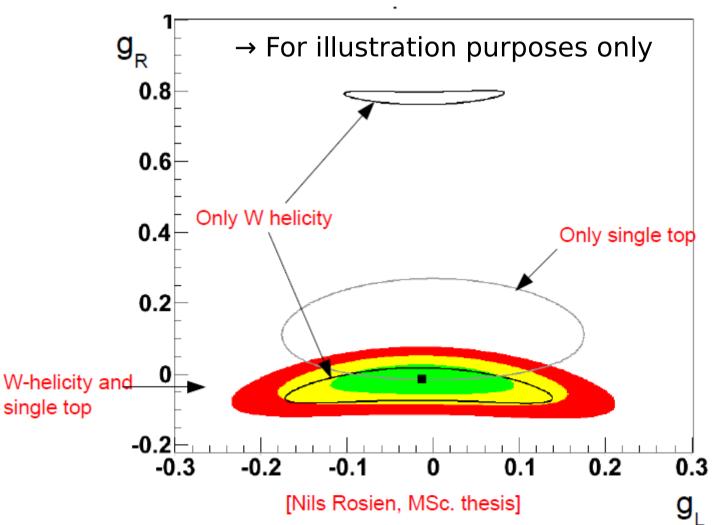
Single top production cross-section

- Interpretations done outside the collaborations with the published information
- Very useful to know what to expect but a detailed study of the correlations can't be done

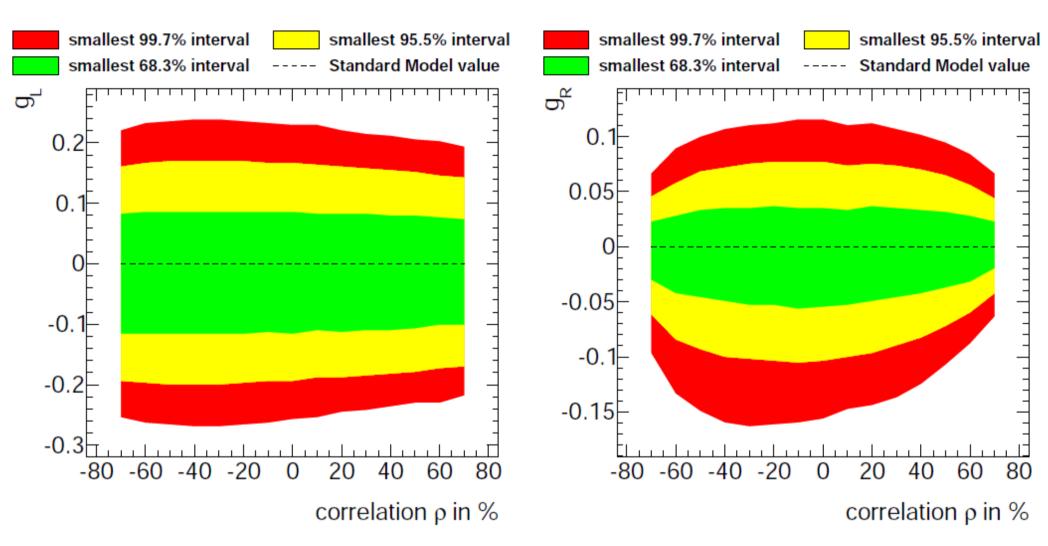
- The Best Linear Unbiased Estimator (BLUE) method:
 - The combined result is a linear combination of the individual measurements
 - The combined result is unbiased
 - The combined result has a minimum variance

• Minimize $\sum_{i} \sum_{j} (y' - y_i) E_{ij}^{-1} (y' - y_j)$

$$\hat{y} = \sum_{i} \alpha_{i} y_{i}$$

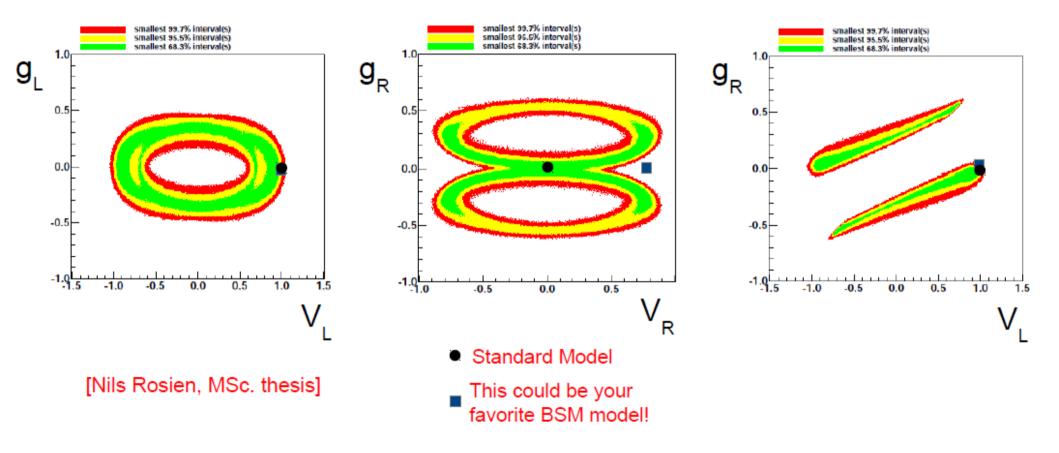

[NIM 270 1 (1988) 110]

- Full covariance matrix needed [Eur. Phys. J. C, 74 (2014) 2717]
- In the present case, what we want is not a combined measurement (e.g. if the individual measurements are the W helicity fractions and the single top production cross-section) but rather the combined contraints on the anomalous Wtb couplings

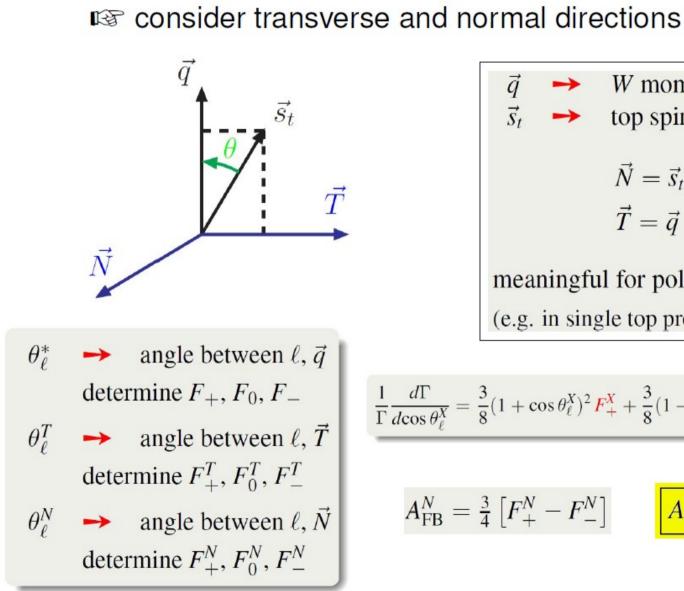


$$y^{\prime}=F(V_L,V_R,g_L,r_R)$$

- It's crucial to apply the efficiency corrections when interpreting the measurements
- **EFTfitter** (developed by Kevin Kroeninger) can be used:

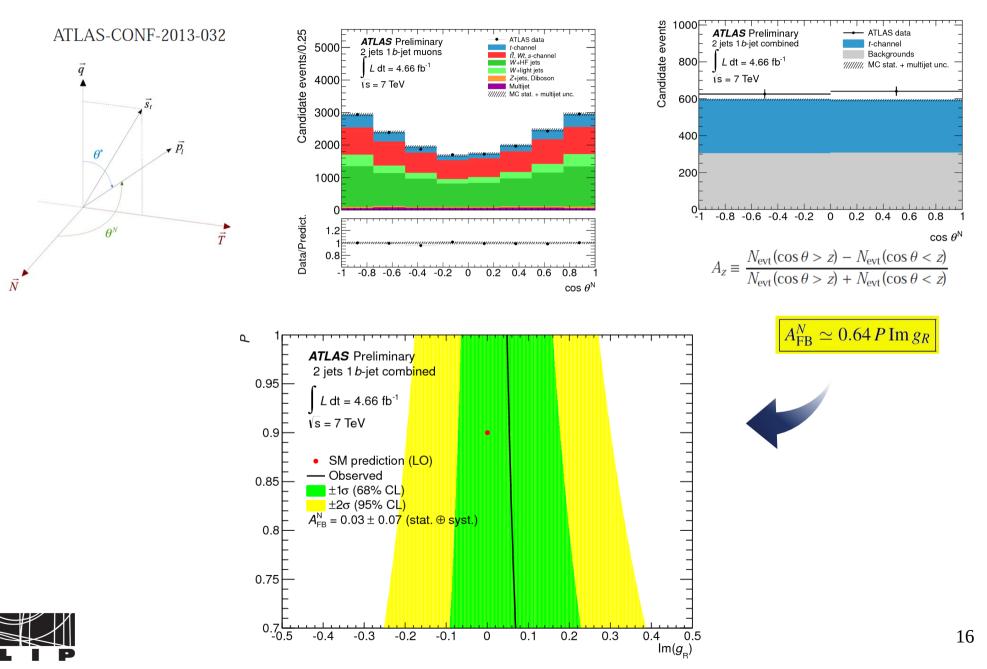


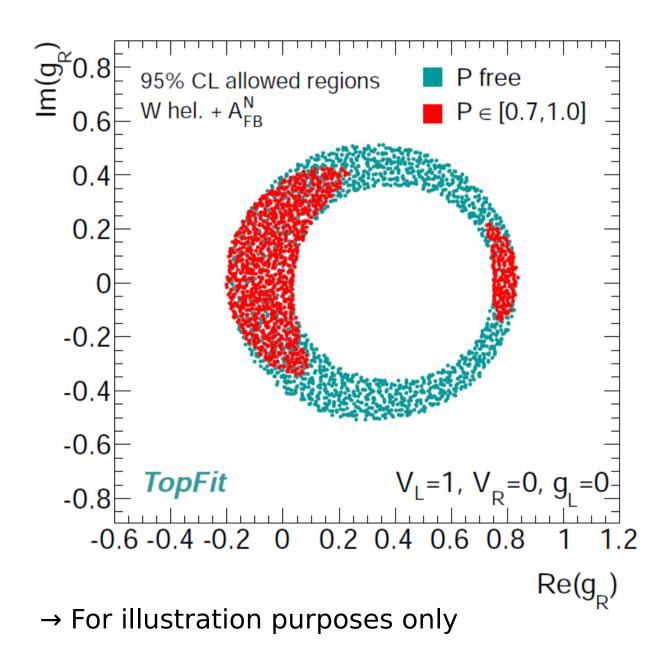
→ For illustration purposes only [Nils Rosien, MSc. thesis] $\frac{\sigma_t - \sigma_{\bar{t}}}{F_0 - \rho}$


13

Allowing all the (real part of the) anomalous couplings to vary simultaneously:

 \rightarrow For illustration purposes only

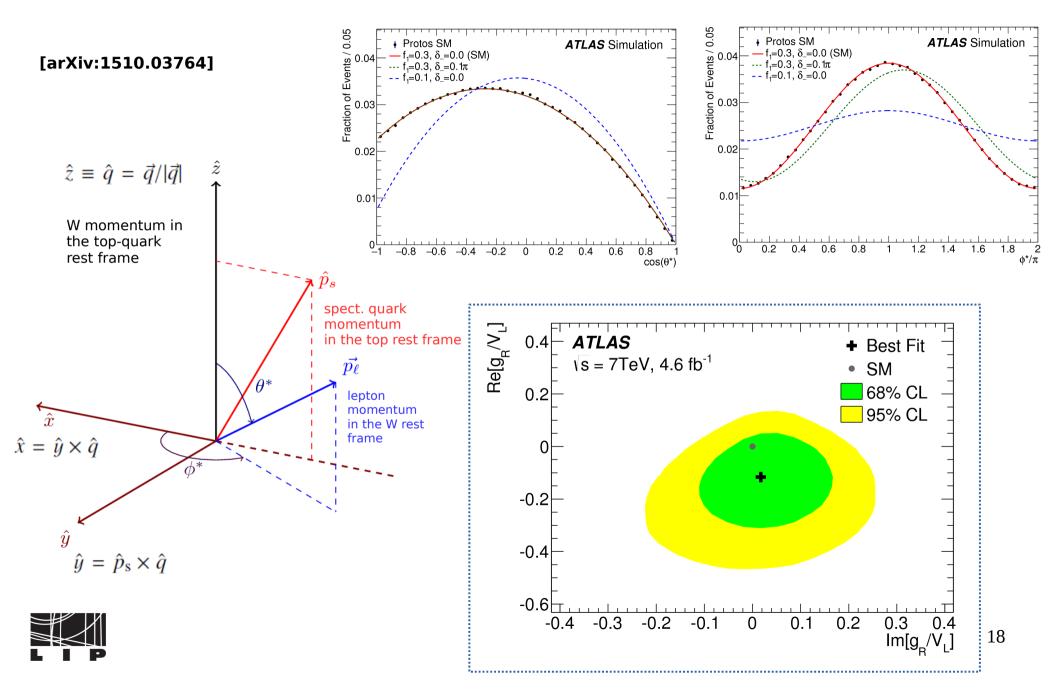



[NPB840 (2010) 349]

$$\vec{q} \rightarrow W \text{ mom in } t \text{ rest frame}$$

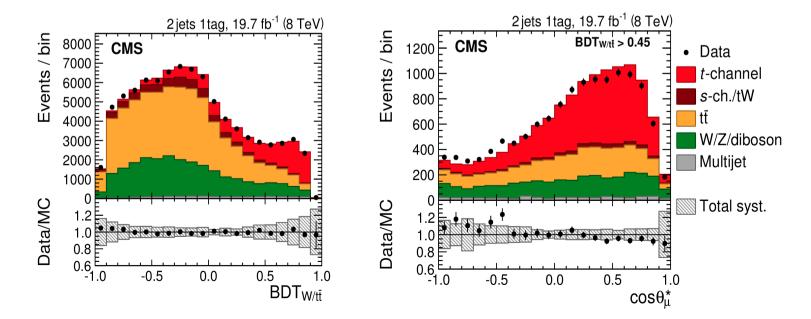
 $\vec{s}_t \rightarrow \text{top spin}$
 $\vec{N} = \vec{s}_t \times \vec{q}$
 $\vec{T} = \vec{q} \times \vec{N}$
meaningful for polarised t decays
(e.g. in single top production)

$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}^{X}} = \frac{3}{8} (1 + \cos\theta_{\ell}^{X})^{2} F_{+}^{X} + \frac{3}{8} (1 - \cos\theta_{\ell}^{X})^{2} F_{-}^{X} + \frac{3}{4} \sin^{2}\theta_{\ell}^{X} F_{0}^{X}$$
$$A_{\text{FB}}^{N} = \frac{3}{4} \left[F_{+}^{N} - F_{-}^{N} \right] \qquad A_{\text{FB}}^{N} \simeq 0.64 P \operatorname{Im} g_{R}$$



17

[arXiv:1511.02138]


$$A_X \equiv \frac{1}{2} P_{\rm t} \, \alpha_X = \frac{N(\uparrow) - N(\downarrow)}{N(\uparrow) + N(\downarrow)}$$

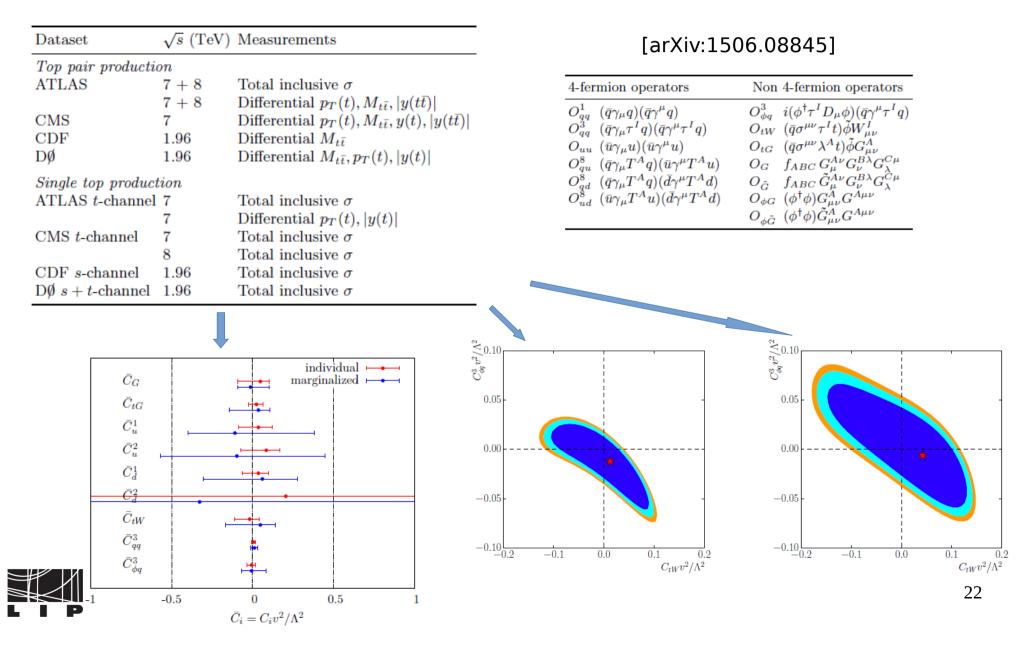
 $N(\uparrow)$ and $N(\downarrow) \rightarrow$ defined, for each top (t \rightarrow bW \rightarrow bµv) as the number of times each decay product (µ) is aligned (or antialigned) w.r.t. the direction of the recoiling spectator quark

$$\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_X^*} = \frac{1}{2}(1+P_t^{(\vec{s})}\alpha_X\cos\theta_X^*) = \left(\frac{1}{2}+A_X\cos\theta_X^*\right)$$

t polarization

 $\rightarrow\,$ Polarization axis: defined along the untagged jet in the top rest frame

	$\delta A_{\mu}(t) / 10^{-2}$	$\delta A_{\mu}(\overline{t})/10^{-2}$	$\delta A_{\mu}(\mathbf{t}+\overline{\mathbf{t}})/10^{-2}$	
Statistical	3.2	4.6	2.6	[arXiv:1511.02138]
ML fit uncertainty	0.7	1.2	0.6	
Diboson bkg. fraction	< 0.1	< 0.1	< 0.1	
Z/γ^* +jets bkg. fraction	< 0.1	< 0.1	< 0.1	
s-channel bkg. fraction	0.3	0.2	0.2	
tW bkg. fraction	0.1	0.7	0.2	
Multijet events shape	0.5	0.7	0.5	
Multijet events yield	1.9	1.2	1.7	
b tagging	0.7	1.2	0.9	
Mistagging	< 0.1	0.1	< 0.1	
Jet energy resolution	2.7	1.8	2.0	
Jet energy scale	1.3	2.6	1.1	
Unclustered $E_{\rm T}$	1.1	3.3	1.3	$A_{1}(t) = 0.20 \pm 0.02$ (stat) ± 0.10 (much) = 0.20 \pm 0.11
Pileup	0.3	0.2	0.2	$A_{\mu}(t) = 0.29 \pm 0.03 (\text{stat}) \pm 0.10 (\text{syst}) = 0.29 \pm 0.11,$
Lepton identification	< 0.1	< 0.1	< 0.1	$A_{\mu}(\bar{t}) = 0.21 \pm 0.05 (\text{stat}) \pm 0.13 (\text{syst}) = 0.21 \pm 0.14,$
Lepton isolation	< 0.1	< 0.1	< 0.1	$A_{\mu}(t+\overline{t}) = 0.26 \pm 0.03 \text{ (stat)} \pm 0.10 \text{ (syst)} = 0.26 \pm 0.11,$
Muon trigger efficiency	< 0.1	< 0.1	< 0.1	$A_{\mu}(t+t) = 0.20 \pm 0.05 (\text{stat}) \pm 0.10 (\text{syst}) = 0.20 \pm 0.11,$
Top quark $p_{\rm T}$ reweighting	0.3	0.3	0.3	
W+jets W boson $p_{\rm T}$ reweighting	0.1	0.1	0.1	(0.44 expected in the SM)
W+jets heavy-flavour fraction	4.7	6.2	5.3	
W+jets light-flavour fraction	< 0.1	< 0.1	0.1	p(data SM) = 4.6%
W+jets $\cos \theta_{\mu}^{*}$ reweighting	2.9	3.4	3.1	$p(\operatorname{unid}[\operatorname{ONI}]) = 4.076$
Unfolding bias	2.5	4.2	3.1	
Generator model	1.6	3.5	0.3	
Top quark mass	1.9	2.9	1.8	
PDF	0.9	1.6	1.2	
<i>t</i> -channel renorm./fact. scales	0.2	0.2	0.2	
t t renorm./fact. scales	2.2	3.4	2.7	
tt ME/PS matching	2.2	0.5	1.6	
W+jets renorm./fact. scales	3.7	4.6	4.0	
W+jets ME/PS matching	3.8	3.0	3.4	
Limited MC events	2.1	3.2	1.8	
Total uncertainty	10.5	13.8	10.5	


injecting anomalous Wtb-vertex coupling events as pseudo-data

Some concluding remarks

- In order to go further on the (general) Wtb vertex study we need a combination of different observables between experiments. This requires additional information to be properly done:
 - Type of uncertainties: gaussian (this would make our life simpler...)
 - Categories of uncertainties (stat., JES, b-tagging, etc): same categories between measurements / experiments
 - Correlation between uncertainties: one needs to remember to save the information on the sign of uncertainties (\pm)
 - MC samples with anomalous couplings needed to access the impact on the eff * accept
 - It's crucial not to assume the SM Wtb vertex in the measurements (e.g. when doing the unfolding)
 - Shall we also start thinking about a combination of fiducial measurements affecting related to the Wtb vertex?

Going even further: towards a global fit in the top sector

