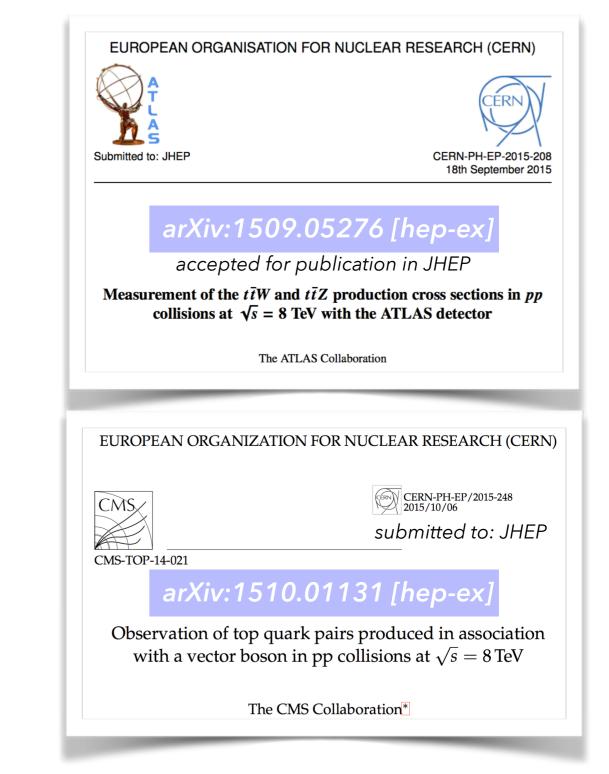


ATLAS and CMS Run-1 ttV production measurement

Tamara Vázquez Schröder

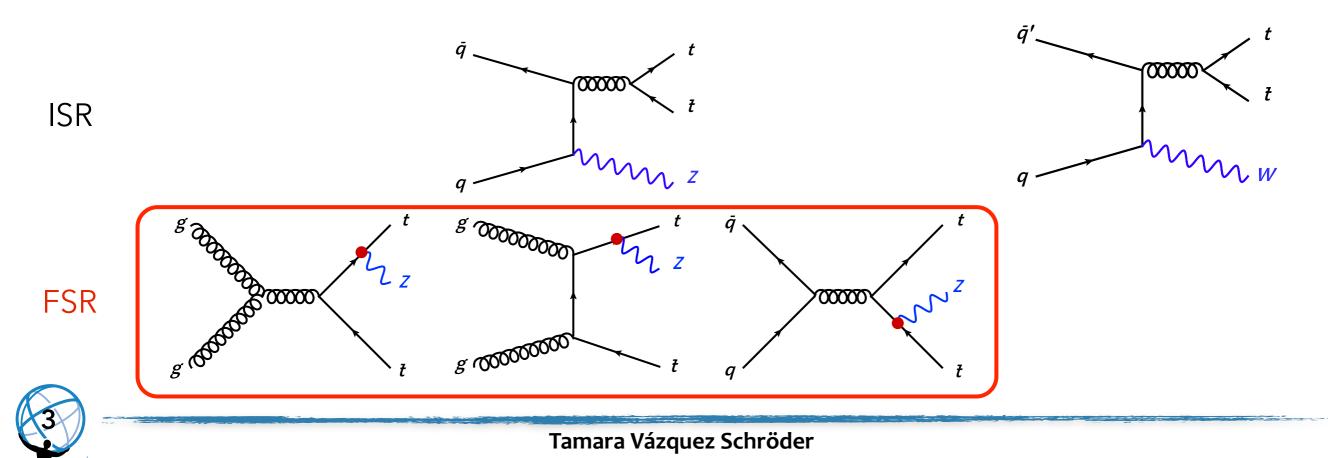
(McGill University) after consultation with Andrew Brinkerhoff (CMS) and Markus Cristinziani (ATLAS) on behalf of the ATLAS and CMS collaborations


LHC TOP WG meeting

18/11/2015

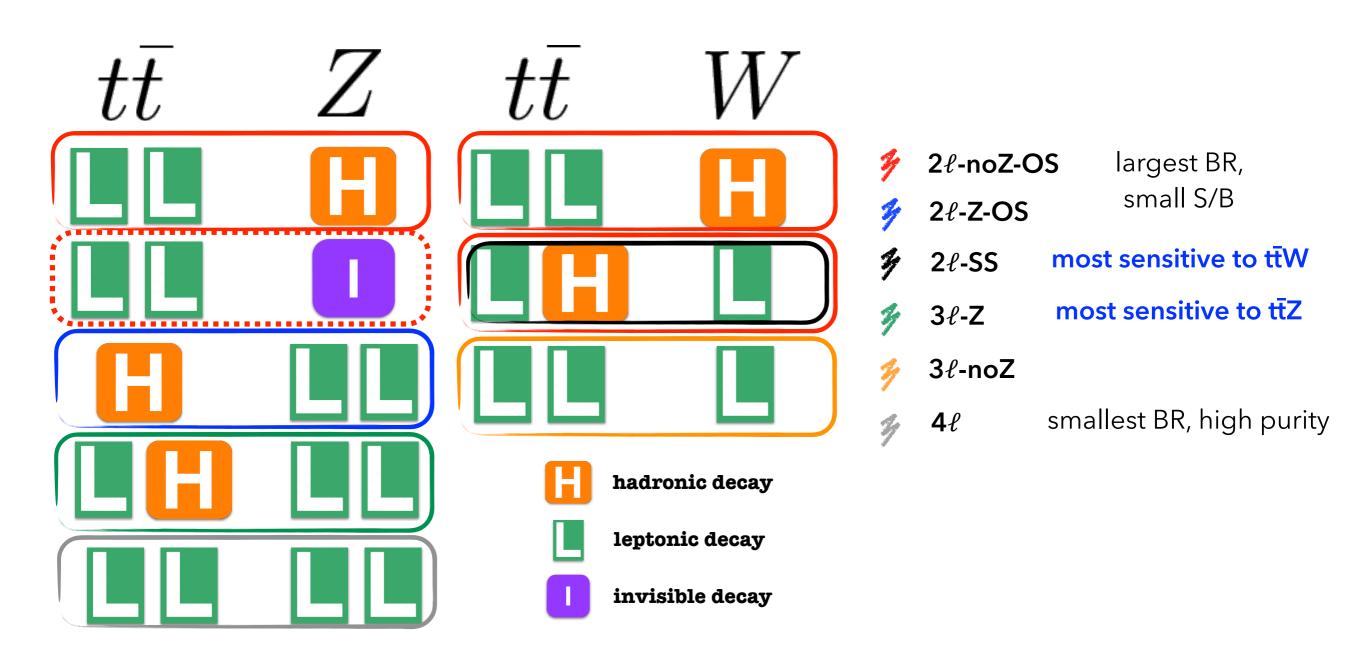
Based on:

* Introduction


- ✤ tīZ and tīW decay modes
- * Analyses strategies
- * Signal and background modelling
- * Cross section measurement
- ***** Extra: Extended interpretation (CMS)
- * Combination plans
- ***** Conclusions

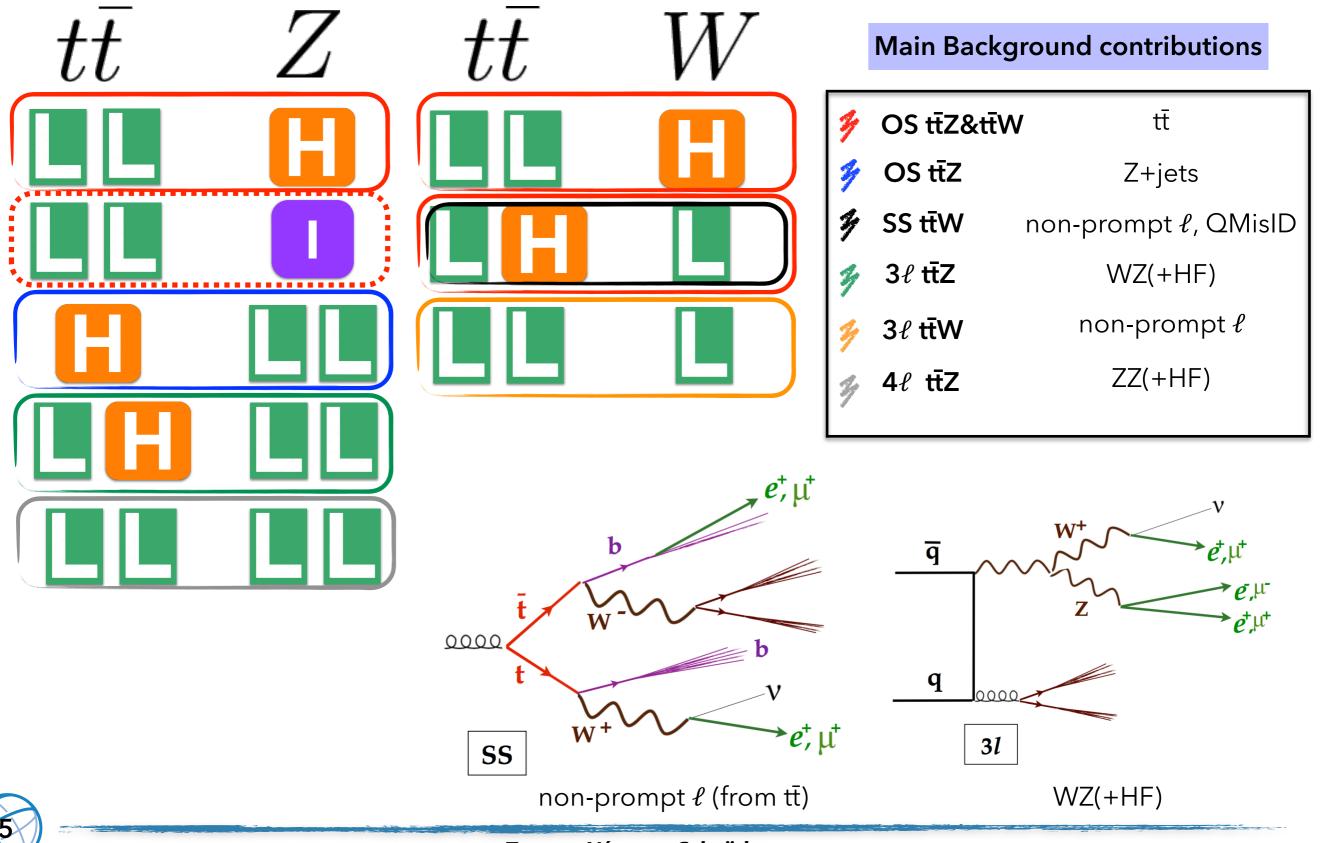
2

Introduction



- **# tīZ**: associated production of a top quark pair and a Z-boson
 - FSR processes would allow us to measure the weak isospin of the top
 - cross-section of ttZ production sensitive to anomalous t-Z couplings!
- **tīW**: associated production of a top quark pair and a W⁺ or W⁻ -boson
 - $\bullet\,$ only ISR processes similar to ttz ISR
- Some new physics models enhance the ttw and ttZ cross sections without affecting Higgs or top production
- tītZ and tītW are dominant (irreducible) backgrounds for tītH and many NP searches it is important to measure both processes

tīZ/W decay modes



All analysis channels included by both ATLAS and CMS experiment at 8 TeV with full Run-1 dataset (except 2*l*-noZ-OS, only present in ATLAS) Z: $|m(\ell \ell) - m(Z)| < 10 \text{ GeV}$ noZ: $|m(\ell \ell) - m(Z)| > 10 \text{ GeV}$ OS: leptons with opposite sign charge SS: leptons with same sign charge

tīZ/W decay modes: main backgrounds

Analysis Channels (OS, SS and 3ℓ)

CMS

Channel	OS t	ŧΖ	9	$SS t\bar{t}V$	V	$3\ell t\bar{t}W = 3\ell t\bar{t}$		tīZ	
Lepton flavor	ee/µµ	ee/µµ <mark>eµ</mark>		ee eµ µµ Any		Any		Any	
Lepton ID	2 loose		2 tight		SS t	SS tight SS tigh		ight	
Lepton charge ID	$\geq 0 \mathrm{p}$	ass	2 pass SS pass SS			SS p	SS pass		
$Z \rightarrow \ell \ell$ candidates	1			0		0		<u>≥</u> 1	
Number of jets	5	<u>≥6</u>	3		≥ 4	1	≥2	3	≥ 4
Number of b tags	$\geq 1 \mathrm{me}$	dium	\geq 2 loose or \geq 1 medium						
Other			$Z \rightarrow ee veto$						
Subchannels	4			6		2	2	2	2

'Loose' retains ~90-99% prompt ℓ, rejects ~50% non-prompt ℓ
'Tight' retains ~80/90% prompt e/μ, rejects ~85/80% non-prompt e/μ

CRs targeting tī+jets (OS tīZ)

Medium (Loose) CSV b-tagging WP: 70 (85)% b-eff, 20 (40)% c-mistag, 1 (10)% light mistag)

ATLAS

Channel	OS tīZ	OS tīZ&tīW	SS t Ī W	3ℓ tīW	3ℓ tīZ
Lepton flavor	ee, μμ	Any	ee eμ μμ	Any	Any
Lepton ID	2 'loose'	2 'loose'	2 'tight'	3 'loose'	3 'loose'
$Z \rightarrow \ell \ell$ candidates	1	0	0	0	1 (OS SF)
Number of jets	3 4 ≥5	3 4 ≥5	$2, 3 \ge 4$	≥ 2	3 ≥4
Number of b tags	2	1, 2	<u>≥ 2</u>	≥ 2	0 1 2
ETmiss [GeV]			$40-80 \ge 80$		
Other			$H_T > 240 \text{ GeV}$	not all same-sign	
Sub channels	1 + 2	1 + 2	1 (ee) + 8	1	1 + 3

CRs targeting Z+jets (OS tītZ), tīt (OS tītZ&tītW), WZ (3*l* tītZ), and ZZ (4*l* tītZ)

Low/High Njets and Low/ High ETmiss regions only in <mark>eµ and µµ (SS tīW)</mark>

MV1 b-tagging WP: same % as Medium CSV from CMS

* Dilepton triggers (CMS) vs Single lepton trigger (ATLAS): lepton pT of leading lepton (25 GeV ATLAS)

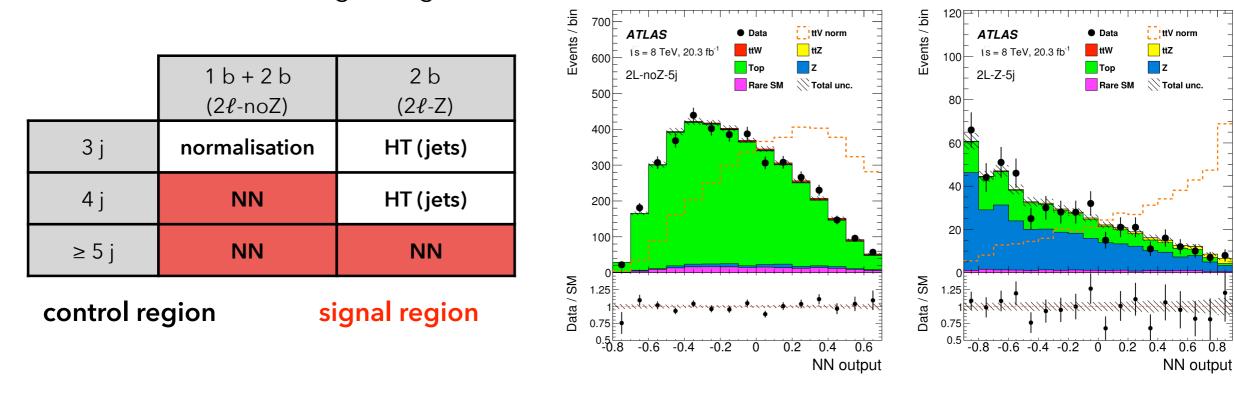
Analysis Channel (4 ℓ)

ATLAS

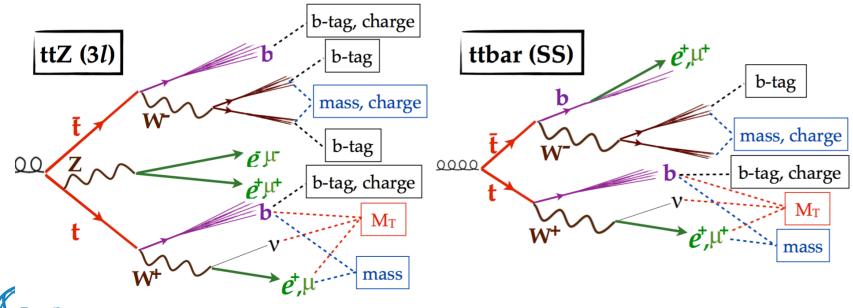
- Events selected with 2 pairs of OS leptons, at least 1 pair is same-flavour (SF)
 - $Z_1 = OSSF$ lepton pair with M_{inv} closest to m_Z
 - Z_2 = the remaining pair
- Five signal regions defined according to the relative flavour of the Z₂ lepton pair: **SF** or **DF**

Region	Z ₂ leptons	p_{T4}	<i>P</i> T34	$ m_{\ell\ell}-m_{Z_2} $	$E_{\mathrm{T}}^{\mathrm{miss}}$	Njets	N _{b-jets}
4ℓ-DF-0b	$e^{\pm}\mu^{\mp}$	> 10 GeV	> 45 GeV	-	-	≥ 2	0
4 <i>ℓ</i> -DF-1b	$e^{\pm}\mu^{\mp}$	> 7 GeV	> 35 GeV	-	-	-	1
4ℓ-DF-2b	$e^{\pm}\mu^{\mp}$	> 7 GeV	-	-	-	-	≥ 2
4 <i>ℓ</i> -SF-1b	$e^{\pm}e^{\mp},\mu^{\pm}\mu^{\mp}$	> 7 GeV	> 25 GeV	{ > 10 GeV < 10 GeV	> 40 GeV > 80 GeV	-	1
4ℓ-SF-2b	$e^{\pm}e^{\mp},\mu^{\pm}\mu^{\mp}$	> 7 GeV	-	{ > 10 GeV < 10 GeV	- > 40 GeV }	-	≥ 2

Include 4*l*-ZZ control region (|m_{Z1,2} - m_Z| < 10 GeV and E_T^{miss} < 50 GeV)</p> Signal region if Z₂ is DF or if SF pair has a mass outside a Z-mass window of 10 GeV


CMS

Channel	$4\ell t \bar{t} Z$			
Lepton flavor	Any			
Lepton ID	4 loose			
Lepton charge ID	4 p	ass		
$Z \rightarrow \ell \ell$ candidates	2 1			
Number of jets	2	1		
Number of b tags	≥1 l	oose		
Other	$H_{\rm T}^{\rm miss} > 30 {\rm GeV}$			
Subchannels	2	2		



* ATLAS: all "counting" analyses, except OS ttZ and OS ttZ&ttW channels, where a **neural network** (NN) is trained in each of the 3 signal regions

 \Rightarrow CMS: event reconstruction using Matching Linear Discriminant (MatchLD), as input to BDT (except 4 ℓ)

- Leptons, jets, ETmiss from **tī decays** preserve information of parent particles
- Build variables from permutations

Signal: modelled with Madgraph5+Pythia6

- same ttz NLO QCD calculation based on Powhel (arxiv 1208.2665)
 - **ATLAS** includes the off shell $tt_{\gamma}^* \rightarrow \ell \ell$ production in the $t\overline{t}Z$ cross section = 215 fb
 - $t\bar{t}Z$ on shell = 206 fb
- different ttW NLO QCD calculation:
 - ATLAS uses ttW sec = 232 fb, from MCFM (arxiv 1204.5678)
 - CMS uses sec = 203 fb from Powhel (arxiv 1208.2665)
 - Different scale choice: mt (MCFM) . vs . mt + mw/2 (Powhel)

Prompt background (*t* originating from W/Z decay): estimated with MC simulation

• CMS: Madgraph5+Pythia6 for all processes, except ttH (Pythia)

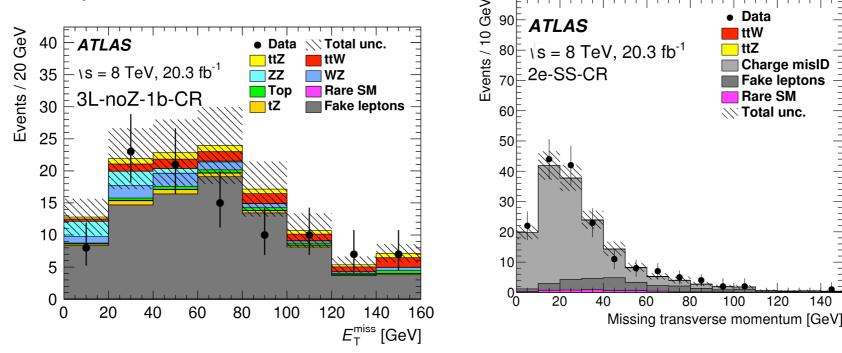
ATLAS	Generator
Z+jets	Alpgen+Pythia6
tī, single top	PowHeg+Pythia6
WW, WZ, ZZ	Sherpa.1.4.1 (massive b/c)
tZq, WtZ ^(*) , t ī WW	Madgraph+Pythia6
tīH	PowHel+Pythia8

(*) WtZ not included in CMS

Both ATLAS and CMS apply corrections on some of these background processes, e.g.: tt (top pT)

- CMS applies corrections to Z, WZ and ZZ + additional jets from data (ATLAS includes uncertainties)
- Both apply uncertainty on extra heavy partons (Z+jets, WZ, ZZ)

Fakes and QMisID background processes



*** Non-prompt leptons**: semileptonic b-decay, jet fakes

- main sources: tt in SS events, tt and Z in $3\ell \rightarrow$ estimated from data driven estimation
 - define control regions with looser lepton requirements
 - fake factors estimated from control/sideband regions as f = N_{tight}/N_{loose} , measured separately for e and μ , and binned in lepton pT
 - uncertainty ~ 40 (60) % for e (µ) in CMS and 20-25% in ATLAS

Charge misidentification: mostly affecting di-electron SS region

- charge misID rates measured in data from control regions, parametrised in p_T and η (ATLAS) or only η of the electron (CMS)
- weights from charge misID rates applied to OS data-driven background template
- uncertainty 10-30%

* Simultaneous binned profile likelihood fit

$$L(\mu, \theta) = L_{Pois}(\mu, \theta) \cdot \prod_{p} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{\theta_{p}^{2}}{2}\right)$$

Parameters of interest: signal strength $\mu_{t\bar{t}Z}$ and $\mu_{t\bar{t}W}$

$$\mu = \frac{\sigma_{t\bar{t}V}}{\sigma_{t\bar{t}V}^{SM}}$$

Systematic uncertainties included in the fit as <u>nuisance parameters θ</u>

Need sufficiently flexible model of signal and background!

ATLAS: Include CRs to constrain main background processes: tī, Z+jets, WZ, and ZZ

- WZ and ZZ floating normalisation factors (μ_{WZ} and μ_{ZZ}) correlated across channels
- CMS: BDT helps separating background-like from signal-like regions → constrain of main background uncertainties

Systematic Uncertainties within each experiment

- Correlate jet/E_T^{miss}-related, lepton-related, b-tag calibration related NPs
- **Correlate** common background modelling NPs (tZ, tītH)
- **Correlate** signal modelling uncertainties
- Other background modelling uncertainties (QMisID, MisID/non-prompt, tī, Z+jets, WZ and ZZ shape uncertainties, and small background contributions) **uncorrelated** across channels

	ina	ividual m	easurem	ients (1µ))	
tŧW	Cross section (fb) Signal s		Signal str	rength (μ)	Signific	cance (σ)
Channels	Expected	Observed	Expected	Observed	Expected	Observed
SS	203^{+88}_{-73}	414_{-112}^{+135}	$1.00\substack{+0.45\\-0.36}$	$2.04\substack{+0.74 \\ -0.61}$	3.4	4.9
3ℓ	203^{+215}_{-194}	210^{+225}_{-203}	$1.00\substack{+1.09\\-0.96}$	$1.03\substack{+1.07 \\ -0.99}$	1.0	1.0
$SS + 3\ell$	203^{+84}_{-71}	382^{+117}_{-102}	$1.00\substack{+0.43\\-0.35}$	$1.88\substack{+0.66\\-0.56}$	3.5	4.8
tīZ	Cross se	ction (fb)	Signal st	rength (μ)	Signific	ance (σ)
Channels	Expected	Observed	Expected	Observed	Expected	Observed
OS	206^{+142}_{-118}	257^{+158}_{-129}	$1.00\substack{+0.72\\-0.57}$	$1.25\substack{+0.76\\-0.62}$	1.8	2.1
3ℓ	206^{+79}_{-63}	257^{+85}_{-67}	$1.00\substack{+0.42\\-0.32}$	$1.25^{+0.45}_{-0.36}$	4.6	5.1
4ℓ	206^{+153}_{-109}	228^{+150}_{-107}	$1.00\substack{+0.77\\-0.53}$	$1.11\substack{+0.76 \\ -0.52}$	2.7	3.4
$OS + 3\ell + 4\ell$	206^{+62}_{-52}	242^{+65}_{-55}	$1.00\substack{+0.34\\-0.27}$	$1.18\substack{+0.35\\-0.29}$	5.7	6.4

individual mascuraments (11)

CM

tīZ: higher expected sensitivity in CMS

slight excess in data in 2ℓSS channel (tīW) in both ATLAS&CMS

	<i>tī</i> W sigr	nificance	tīZ sign	ificance	
Channel	Expected	Observed	Expected	Observed	
2ℓOS	0.4	0.1	1.4	1.1	
2ℓSS	2.8	5.0	-	-	
3ℓ	1.4	1.0	3.7	3.3	
4ℓ	-	-	2.0	2.4	
Combined	3.2	5.0	4.5	4.2	

individual

measurements (1µ)

simultaneous

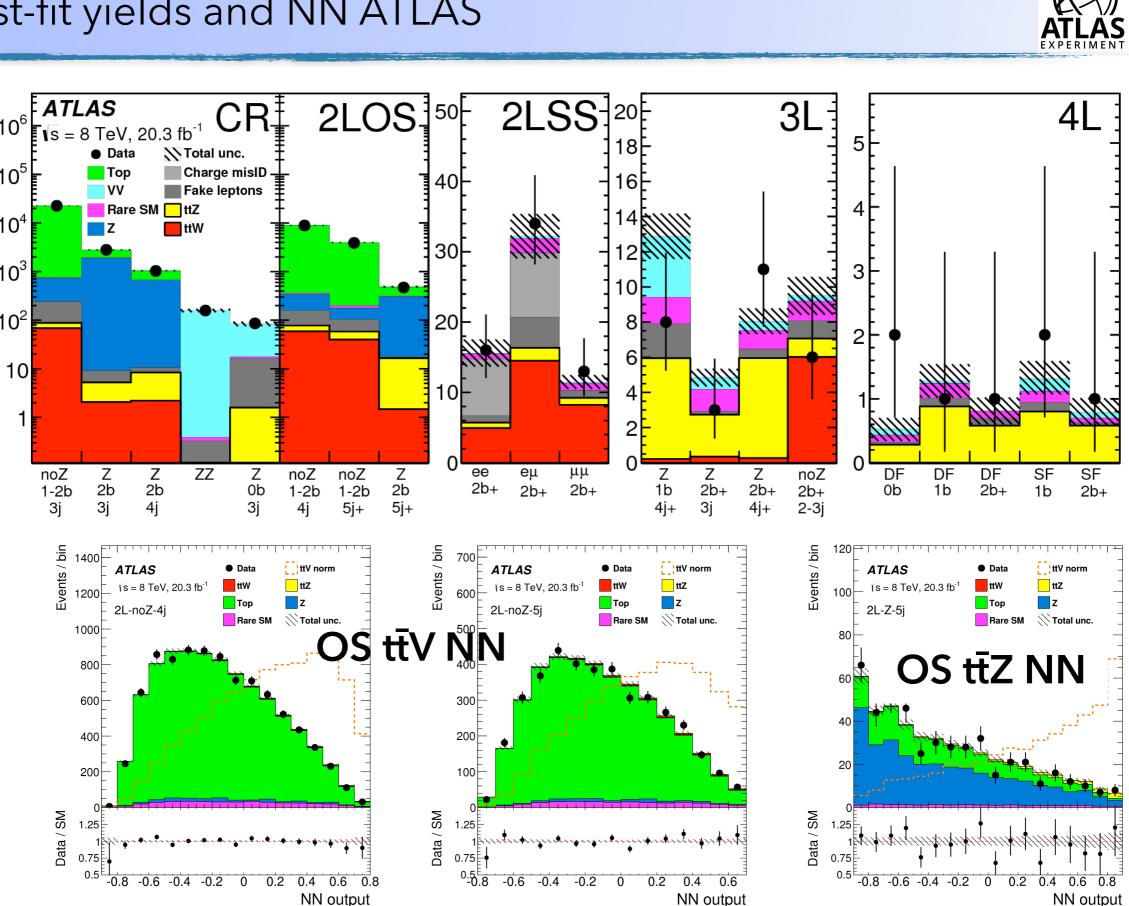
measurement (2µ)

ATLAS

Post-fit yields and NN ATLAS

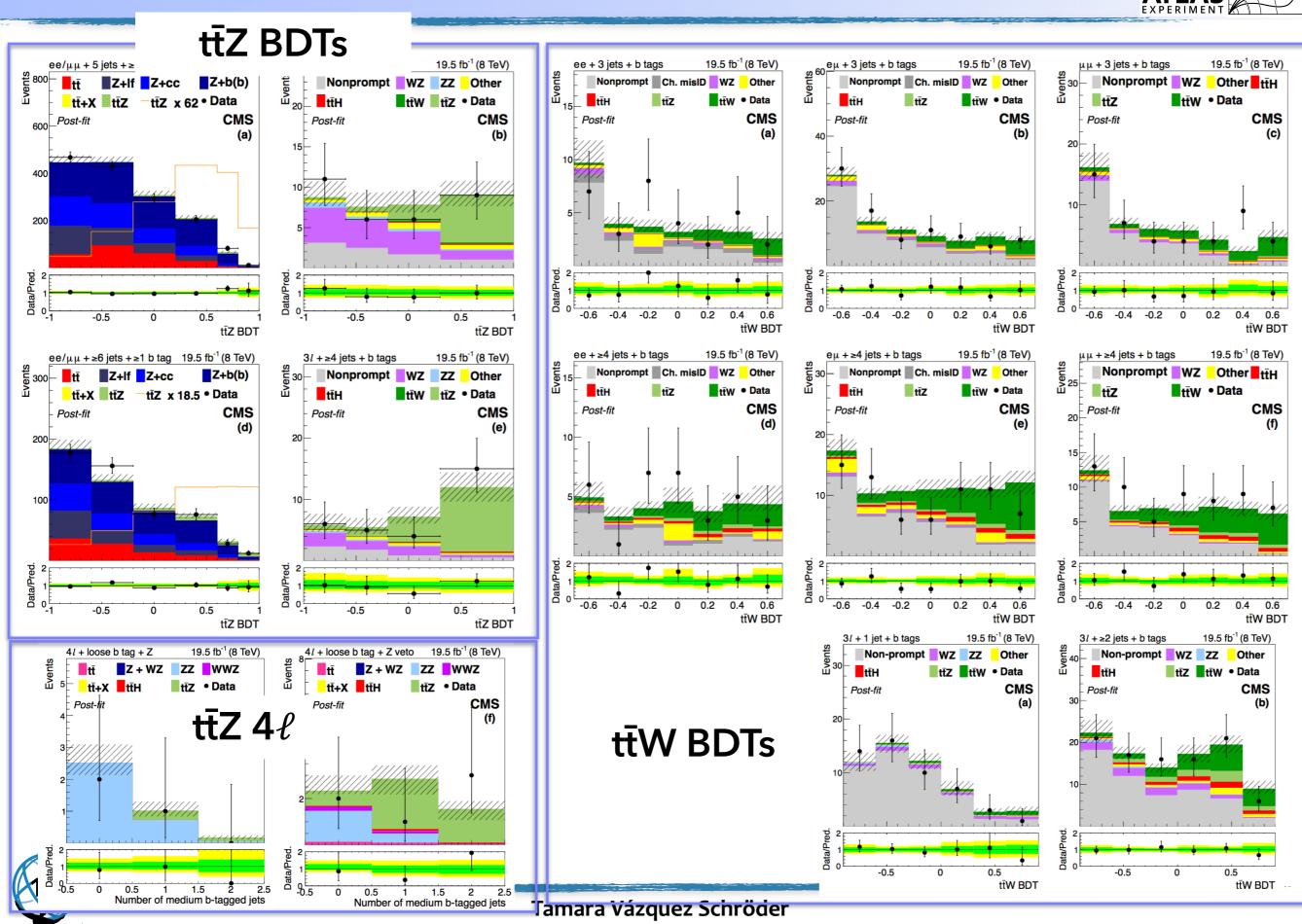
Events / channel

10⁶


0⁵

0⁴

10³


10²

1

CMS

Post-fit yields and BDTs CMS

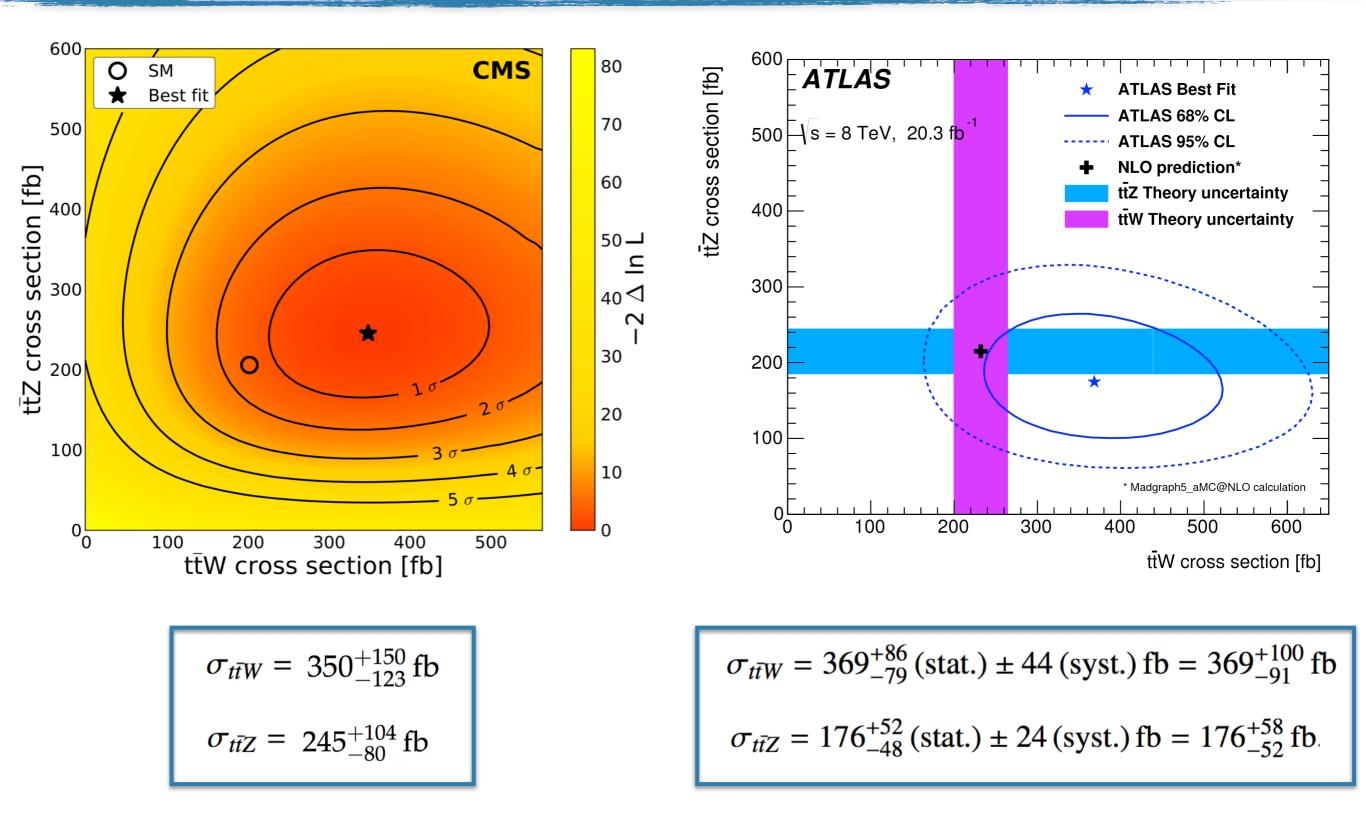
CMS

Results: impact systematic uncertainties

Systematic uncertainties removed	tīW	tīZ
Signal modeling	5.2%	7.1%
Nonprompt backgrounds	12.5%	0.5%
Inclusive prompt backgrounds	0.7%	2.6%
Prompt backgrounds with extra jets	0.2%	3.4%
Prompt backgrounds with extra heavy flavor jets	<0.1%	1.1%
b tagging efficiency	6.1%	7.3%
Jet energy scale	1.4%	<0.1%
Lepton ID and trigger efficiency	0.3%	0.5%
Integrated luminosity and pileup	0.7%	0.5%
Bin-by-bin statistical uncertainty in the prediction	4.4%	1.2%
All systematic uncertainties removed	31%	29%
		-

Uncertainty	$\sigma_{t\bar{t}W}$	$\sigma_{t\bar{t}Z}$
Luminosity	3.2%	4.6%
Reconstructed objects	3.7%	7.4%
Backgrounds from simulation	5.8%	8.0%
Fake leptons and charge misID	7.5%	3.0%
Signal modelling	1.8%	4.5%
Total systematic	12%	13%
Statistical	+24% / -21%	+30% / -27%
Total	+27% / -24%	+33% / -29%

- Repeat ttZ and ttW fit (individually) fixing the corresponding set of nuisance parameters to 0 (expected in CMS, observed in ATLAS)
- CMS (Δi-Δj), ATLAS (subtract in quadrature)
 - similar stat and syst contribution to total uncertainty in CMS, stat dominating in ATLAS
- * ATLAS 'Statistical' includes bin-bybin MC statistical uncertainty

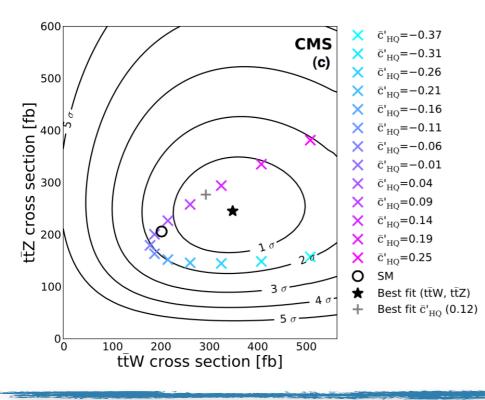

* Dominant systematic uncertainties:

- tt̄W: non-prompt ℓ (QmisID) background (ATLAS&CMS), btagging efficiency and signal modelling (CMS), background from simulation (ATLAS)
- **tīZ**: modelling background from simulation (ATLAS), b-tagging efficiency (CMS) and signal modelling (ATLAS&CMS)

ATLAS

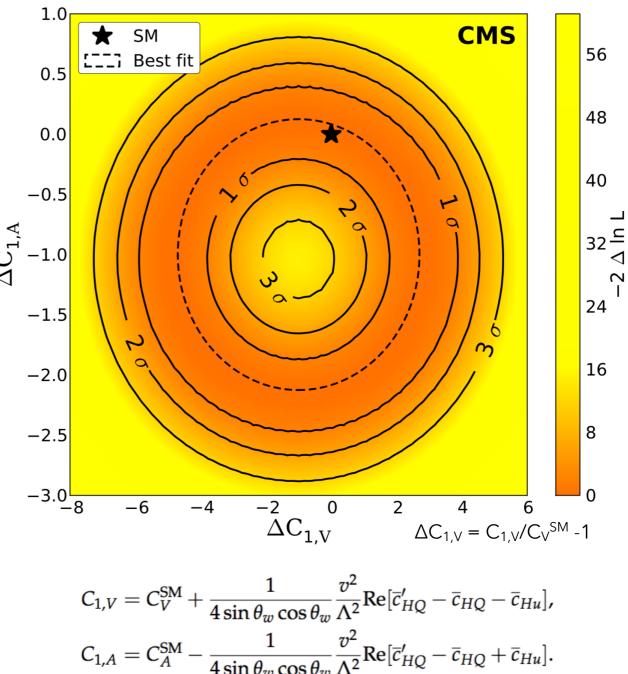
Simultaneous fit tīZ and tīW

CMS



Constraints on dimension six operators

$$egin{split} \mathcal{L}_{ ext{eff}} &= \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda} \mathcal{L}_1 + rac{1}{\Lambda^2} \mathcal{L}_2 + \cdots \ &= \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda} \sum_i (c_i \mathcal{O}_i + ext{h.c.}) + rac{1}{\Lambda^2} \sum_j (c_j \mathcal{O}_j + ext{h.c.}) + \cdots, \end{split}$$


CMS tTZ and tTW cross section measurements place the best direct constraints certain dimension six operators to date

Operator	Best fit point(s)	1 standard deviation CL	2 standard deviation CL	
\bar{c}_{uB}	-0.07 and 0.07	[-0.11, 0.11]	[-0.14, 0.14]	
\bar{c}_{3W}	-0.28 and 0.28	[-0.36, -0.18] and [0.18, 0.36]	[-0.43, 0.43]	<
$\bar{c}'_{ m HQ}$	0.12	[-0.07, 0.18]	[-0.33, -0.24] and $[-0.02, 0.23]$	<u>ر</u> ک
$ar{c}_{ m Hu}$	-0.47 and 0.13	[-0.60, -0.23] and [-0.11, 0.26]	[-0.71, 0.37]	$\overline{\mathbf{A}}$
\bar{c}_{HQ}	-0.09 and 0.41	[-0.22, 0.08] and [0.24, 0.54]	[-0.31, 0.63]	7

Constraints on the axial and vector components of the tZ coupling

Interpret ttZ cross section measurement in terms of limits on $C_{1,V}$ and $C_{1,A}$

***** Work ongoing towards **Run1 legacy ttV ATLAS+CMS combination**

- Option to interpret results in terms of anomalous couplings (as done by CMS)
- <u>Contacts</u>: Markus and Andrew

* One common fitting technique: profile likelihood fit

- The **RooFit** toolkit extends the ROOT analysis environment by providing a language to describe data models
- Fitting tools based on **RooStat** (project to provide advanced statistical techniques for the LHC collaborations, built on top of *RooFit*)

* One common data model format: workspace

- Save data and an arbitrarily complicated model in a ROOT file (using *RooWorkspace* class)
- Inputs to the fit
- Allows the combination of ttV channels

Revious experience from LHC Higgs Run1 coupling combination

 $\bullet\,$ similar setups, ttV NLO QCD cross section discussion

Status:

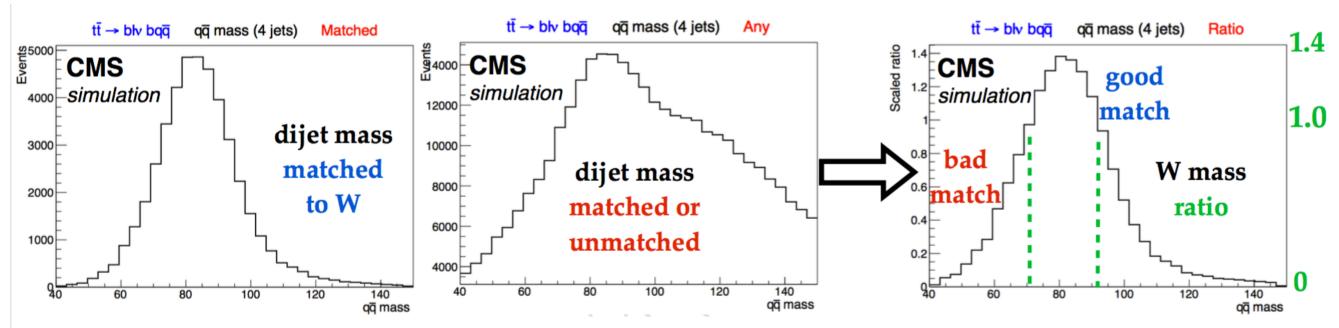
Workspaces exchanged and tested by each experiment (since Oct 6th)

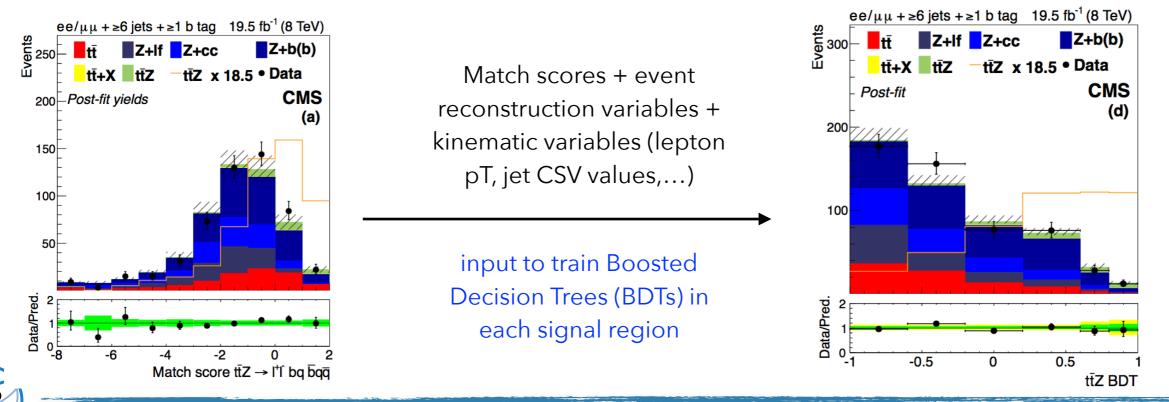
- Decide correlation scheme (preliminary):
 - (Part of) luminosity, as in other cross-section combinations
 - Signal modelling (need to map variations)
 - Background modelling: ttH normalisation
 - Other backgrounds not clear (different phase space cuts)
- Study effect of correlation . vs . uncorrelation for the dominant systematics in case of doubt
- \square Need to agree on ttW NLO QCD calculation:
 - does not change the result, just different signal strength (not quoted in ATLAS)
 - Run fit with both fitting frameworks, as a cross-check
- Combine each channel separately and run per-channel fits
- Interpret result in terms of anomalous couplings

* Both ATLAS and CMS exploited the full Run1 dataset to perform competitive ttZ and ttW cross section measurements: new channels, new techniques, background modelling studies, etc.

 Observation of both ttZ and ttW processes with ~20 fb⁻¹ at 8 TeV (in one or the other experiment)

Run1 ATLAS+CMS **combination** ongoing: already performing combination tests with individual channels with each combination+fitting framework





• For each input variable to the discriminant, get ratio of value for the correct jet(s) to value for any jet(s)

CMS

- Matching linear discriminant = product of each bin values from all the ratio histograms
- Permutation with the highest discriminant value = best reconstruction of the tī system
- Reconstruction efficiencies: 75% for events with 4j, 40% for events with ≥5j

Table 1: Summary of preselected, loose, tight, and charge ID lepton selection requirements.

Lepton selection criteria	Prese	lected	Loc	ose	Tig	;ht	Charg	e ID
Lepton flavor	e	μ	e	μ	e	μ	e	μ
<i>p</i> _T (GeV)	>10	>10	>10	>10	>10	>10		
$ \eta $	<2.5	<2.4	<2.5	<2.4	<2.5	<2.4		
Relative isolation	<0.4	< 0.4	<0.4	< 0.4	< 0.4	< 0.4		
Charged relative isolation			<0.15	< 0.20	< 0.05	< 0.15		
Ratio of lepton $p_{\rm T}$ to jet $p_{\rm T}$					>0.6	>0.6		
<i>x-y</i> distance to vertex (mm)	<5	<5	<5	<5	<5	<5		
z distance to vertex (mm)	<10	<10	<10	<10	<10	<10		
IP (mm)					< 0.15			
S_{IP}	<10	<10	<10	<4	<10	<4		
Inner tracker hits								>5
Missing inner tracker hits	<2		<2		<2		0	
Tracker charge – ECAL charge							0	
Electron conversion veto							Pass	

$OS t\bar{t}Z$	$e^{\pm}e^{\mp}/$	$\mu^{\pm}\mu^{\mp}$	e [±]	μ^{\mp}	SS tĪW	e [±]	e±	e [±]	μ^{\pm}	μ^{\pm}	μ^{\pm}
Process	5 jets	\geq 6 jets	5 jets	\geq 6 jets	Process	3 jets	\geq 4 jets	3 jets	\geq 4 jets	3 jets	\geq 4 jets
Z+lf jets	265 ± 57	93 ± 20	<0.1	<0.1	Nonprompt	16.0 ± 3.7	12.9 ± 3.1	57.0 ± 5.4	40.5 ± 4.2	29.0 ± 4.7	26.0 ± 4.4
Z+cc̄ jets	341 ± 74	106 ± 23	<0.1	<0.1	Charge-misidentified	3.3 ± 1.6	1.7 ± 0.8	2.9 ± 0.7	1.6 ± 0.4		
Z+bjet	236 ± 59	68 ± 18	<0.1	<0.1	WZ	1.6 ± 0.5	0.9 ± 0.3	4.5 ± 1.4	2.2 ± 0.8	3.1 ± 1.0	1.3 ± 0.5
Z+bb jets	378 ± 72	136 ± 25	<0.1	<0.1	ZZ	0.2 ± 0.1	0.1 ± 0.1	0.3 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.1 ± 0.1
t ī +lf jets	188 ± 19	58.4 ± 7.3	180 ± 16	57.8 ± 6.4	Multiboson	0.2 ± 0.1 0.8 ± 0.3	0.1 ± 0.1 0.5 ± 0.2	0.5 ± 0.1 1.5 ± 0.5	0.2 ± 0.1 1.2 ± 0.4	0.2 ± 0.1 1.2 ± 0.5	1.1 ± 0.1
tī+hf jets	57 ± 16	30.6 ± 8.3	52 ± 15	27.3 ± 7.3	tbZ/tt+X	1.4 ± 0.4	0.5 ± 0.2 2.5 ± 1.3		1.2 ± 0.4 5.8 ± 2.2	1.2 ± 0.3 0.9 ± 0.3	
tbZ/t Ī WW	4.2 ± 1.8	1.8 ± 0.7	<0.1	<0.1				4.1 ± 1.4			1.2 ± 0.4
tīH	1.4 ± 0.1	1.0 ± 0.2	1.0 ± 0.1	0.6 ± 0.1	tīH	0.3 ± 0.1	1.4 ± 0.2	1.1 ± 0.1	4.0 ± 0.5	0.7 ± 0.1	3.0 ± 0.5
Background	1470 ± 135	494 ± 45	233 ± 21	85.8 ± 9.7	Background	23.7 ± 4.1	20.1 ± 3.5	71.4 ± 5.8	55.4 ± 4.9	35.1 ± 4.8	32.8 ± 4.5
tīZ	24.0 ± 5.5	28.2 ± 6.8	1.3 ± 0.3	0.8 ± 0.2	tŧW	5.5 ± 1.4	8.1 ± 1.9	13.9 ± 3.7	25.2 ± 5.5	10.4 ± 2.8	17.7 ± 4.0
t ī W	1.1 ± 0.2	0.5 ± 0.1	1.2 ± 0.2	0.8 ± 0.2	tŧZ	0.4 ± 0.1	1.3 ± 0.3	1.1 ± 0.2	3.0 ± 0.6	0.7 ± 0.1	2.1 ± 0.4
Expected	1495 ± 135	523 ± 45	236 ± 21	87.4 ± 9.7	Expected	29.6 ± 4.4	29.4 ± 4.0	86.4 ± 6.9	83.6 ± 7.3	46.2 ± 5.6	52.6 ± 6.0
Data	1493	526	251	78	Data	31	32	89	69	47	61

	$3\ell t\bar{t}W$		$3\ell t\bar{t}Z$		$4\ell t \bar{t} Z$	
Process	1 jet	\geq 2 jets	3 jets	\geq 4 jets	≥ 1 jet+Z	≥ 1 jet+Z-veto
Nonprompt	44.6 ± 5.3	54.8 ± 6.4	8.2 ± 2.8	5.4 ± 2.1	_	
Nonprompt WZ/Z			_		<0.1	<0.1
Nonprompt tī			_		<0.1	0.2 ± 0.2
WZ	3.2 ± 0.8	8.0 ± 1.7	11.7 ± 2.9	5.4 ± 1.6	_	
ZZ	1.0 ± 0.2	1.5 ± 0.3	1.6 ± 0.4	0.9 ± 0.3	3.3 ± 0.5	1.8 ± 0.3
Multiboson	0.1 ± 0.1	0.4 ± 0.2	0.5 ± 0.2	0.5 ± 0.2	<0.1	0.3 ± 0.1
tbZ/tt+X	0.4 ± 0.1	3.8 ± 1.1	1.6 ± 0.6	0.7 ± 0.3	<0.1	<0.1
tŧH	0.2 ± 0.1	4.7 ± 0.4	0.3 ± 0.1	0.4 ± 0.1	<0.1	0.2 ± 0.1
Background	49.5 ± 5.4	73.1 ± 6.7	23.9 ± 4.1	13.3 ± 2.7	3.3 ± 0.5	2.4 ± 0.4
tŦW	2.5 ± 0.8	18.8 ± 4.7	0.5 ± 0.1	0.2 ± 0.1	_	
tĪZ	0.3 ± 0.1	7.5 ± 1.2	8.8 ± 1.9	16.9 ± 3.6	0.4 ± 0.1	4.3 ± 1.0
Expected	52.3 ± 5.4	99.4 ± 8.3	33.2 ± 4.5	30.4 ± 4.5	3.7 ± 0.5	6.7±1.1
Data	51	97	32	30	3	6

Event Yields ATLAS (before the fit)

Region	t + X	Bosons	Fake leptons charge misID	Total expected background	tĪW	tīZ	Data
	20800 ± 2600	600 ± 200	$\frac{160 \pm 80}{160 \pm 80}$	21600 ± 2700	42.0 ± 2.8	23.2 ± 1.5	22585
2ℓ-noZ-4j	8200 ± 1400	240 ± 90	80 ± 40	8600 ± 1400	36.6 ± 1.8	22.4 ± 1.1	8909
2ℓ-noZ-5j	3700 ± 850	100 ± 40	47 ± 23	3810 ± 870	24.9 ± 2.2	22.4 ± 2.0	3901
2ℓ-Z-3j*	800 ± 140	1960 ± 880	4.1 ± 2.1	2760 ± 890	1.24 ± 0.13	3.71 ± 0.38	2806
2ℓ-Z-4j*	330 ± 70	740 ± 390	2.2 ± 1.1	1100 ± 400	1.31 ± 0.11	7.21 ± 0.58	1031
2ℓ-Z-5j	170 ± 40	340 ± 200	1.4 ± 0.7	510 ± 210	0.89 ± 0.07	17.7 ± 1.4	471
2e-SS	0.66 ± 0.13	0.17 ± 0.10	8.9 ± 2.4	9.8 ± 2.6	2.97 ± 0.30	0.93 ± 0.23	16
еµ-SS	1.9 ± 0.35	0.39 ± 0.28	14.1 ± 4.5	16.4 ± 5.1	8.67 ± 0.76	2.16 ± 0.51	34
2μ -SS	0.94 ± 0.17	0.25 ± 0.14	0.93 ± 0.55	2.12 ± 0.86	4.79 ± 0.40	1.12 ± 0.27	13
3ℓ-Z-0b3j*	1.11 ± 0.32	67 ± 16	15.2 ± 6.0	83±15	0.05 ± 0.03	1.86 ± 0.47	86
3ℓ-Z-1b4j	1.58 ± 0.42	3.8 ± 1.3	2.4 ± 1.1	7.8 ± 1.6	0.14 ± 0.05	7.1 ± 1.6	8
3ℓ-Z-2b3j	1.29 ± 0.34	0.68 ± 0.33	0.19 ± 0.13	2.16 ± 0.42	0.21 ± 0.07	2.76 ± 0.69	3
3ℓ-Z-2b4j	1.00 ± 0.29	0.48 ± 0.24	0.42 ± 0.37	1.93 ± 0.49	0.14 ± 0.07	6.6 ± 1.6	11
3ℓ-noZ-2b	1.06 ± 0.25	0.27 ± 0.17	1.31 ± 0.90	2.7 ± 0.9	3.7 ± 0.9	1.23 ± 0.32	6
4ℓ-DF-0b	0.06 ± 0.01	0.11 ± 0.04	0.03 ± 0.17	0.21 ± 0.22	-	0.28 ± 0.01	2
4 <i>ℓ</i> -DF-1b	0.22 ± 0.03	0.05 ± 0.03	0.13 ± 0.22	0.39 ± 0.27	-	1.05 ± 0.03	1
4ℓ-DF-2b	0.11 ± 0.02	< 0.01	0.11 ± 0.19	0.22 ± 0.21	-	0.64 ± 0.02	1
4 <i>ℓ</i> -ZZ*	0.01 ± 0.00	134.2 ± 1.2	0.27 ± 0.18	134.5 ± 1.3	-	0.07 ± 0.01	158
4 <i>ℓ</i> -SF-1b	0.16 ± 0.02	0.29 ± 0.06	0.14 ± 0.19	0.61 ± 0.27	-	0.91 ± 0.02	2
4ℓ-SF-2b	0.08 ± 0.01	0.09 ± 0.03	0.04 ± 0.18	0.21 ± 0.23	-	0.64 ± 0.02	1

***** <u>Reminder</u>:

- ATLAS uses $t\bar{t}W \sec = 231 \text{ fb}$, from MCFM (arxiv 1204.5678)
- CMS uses sec = 203 fb from Powhel (arxiv 1208.2665)
- * Started discussion with LHC Higgs XS WG convenors
- Different scale choice: mt (MCFM) . vs . mt + mw/2 (Powhel)
 - Both in the region where the NLO cross section mildly depends on the scale ("plateu region")
- Powhel uses parton shower NLO Monte Carlo, while MCFM is a fixed-order NLO Calculator (total cross section can still differ)
- Final recommendation: best choice for ttw would be Powhel (mt+mw/2) it is in the region of least dependence and it is in line with other choices made for ttV
- * ATLAS could change to Powhel ttw xsec, with x2/0.5 scale uncertainty.

