

SQM 2016

UC Berkeley



## Upsilon production measurements in p-Pb and Pb–Pb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV with ALICE

Antoine Lardeux IRFU-CEA Saclay On behalf of the ALICE collaboration

### Outline:

- ✓ p–Pb results
- ✓ Pb–Pb results



 $Q\bar{Q}$  pairs are produced in the initial stage of the collision by hard scatterings.

 $\mapsto$  sensitive to the evolution of the Quark-Gluon Plasma (QGP).

#### **Quarkonium suppression as a probe of de-confinement:**

- $\mapsto$  Color screening mechanism induced by the high density of color charges in the QGP,
- $\hookrightarrow$  Sequential suppression (feed-down) [hep-ph/0602245].

#### Why to look at bottomonia?

- Bottom-quark effective theory is more reliable than for charmonia (more perturbative process),
- Regeneration of bottomonia through statistical recombination is much smaller than for charmonia (N<sub>cc̄</sub> ≫ N<sub>bb̄</sub>),
- No feed-down from higher-mass open heavy flavors,
- Cold Nuclear Matter (CNM) effects are expected to be smaller than for the charmonia,
- Different kinematics (Bjorken-*x*) ranges probed with respect to charmonia.



## Previous $\Upsilon(1S)$ results



Clear  $\Upsilon(1S)$  suppression, increasing from peripheral to central Pb-Pb collisions.

Similar suppression at forward (ALICE) and mid rapidity regarding the CMS results.

What is going on at higher energy density?

SQM - 30/06/2016

Upsilon production measurements in p-Pb and Pb–Pb collisions at 5.02 TeV with ALICE



## **ALICE** apparatus



Inclusive quarkonium production measured down to zero transverse momentum

SQM - 30/06/2016

Upsilon production measurements in p-Pb and Pb–Pb collisions at 5.02 TeV with ALICE

# pp reference for R<sub>pPb</sub> and R<sub>AA</sub>



#### **Extrapolation method** (not enough statistics in pp data at 5.02 TeV)

Based on fits to LHCb data with different shapes:

- two-parameter functions: linear, power law and exponential,
- a Leading Order Color Evaporation Model (LO-CEM) calculation,
- the energy and rapidity dependence of the total  $\sigma_{b\bar{b}}$  cross section, computed in the FONLL approach with the CTEQ6.6 set of parton distribution functions.

Both  $R_{pPb}$  and  $R_{AA}$  computations reported in this talk are based on this  $\sigma_{pp}$  interpolation





# p-Pb collisions



## Y(1S) in p-Pb collisions at 5.02 TeV

#### **Upsilon measurement:**

Use of fits to the invariant mass distribution of opposite sign muon pairs detected in the muon spectrometer

 $L_{\text{int}} (p-Pb) \approx 5.8 \text{ nb}^{-1}$  $L_{\text{int}} (Pb-p) \approx 5 \text{ nb}^{-1}$ 



#### $R_{\rm pPb}$ as a function of rapidity:



Indication of suppression at forward rapidity, similar to the J/ψ one within uncertainties

Consistent with no suppression at backward rapidity



#### **Comparison to models:**



<u>Forward:</u> better agreement with  $E_{loss}$  and shadowing, <u>Backward:</u> slightly better agreement with  $E_{loss}$  only.

All models are compatible at forward rapidity, Model comparisons suggest smaller antishadowing than assumed (backward rapidity)  $[\Upsilon(2S)/\Upsilon(1S)]_{pPb (bwd)} = 25.8 \pm 9.1 \pm 3.9 \%,$  $[\Upsilon(2S)/\Upsilon(1S)]_{pPb (fwd)} = 27.3 \pm 8.1 \pm 4.0 \%$ 

Consistent with the pp ratios measured by LHCb at 2.76, 7 and 8 TeV. [PLB 740 (2015) 105-117]

#### No evidence for different CNM effects on the $\Upsilon(1S)$ and $\Upsilon(2S)$ within uncertainties

SQM - 30/06/2016

Upsilon production measurements in p-Pb and Pb–Pb collisions at 5.02 TeV with ALICE

## **Pb-Pb** collisions



#### **Upsilon measurement:**

Use of fits to the invariant mass distribution of opposite sign muon pairs detected in the muon spectrometer

 $L_{int} \approx 225 \ \mu b^{-1}$ 



Various fits are performed by changing the background and signal shapes, the fitting range, etc.  $N_{\Upsilon(1S)} = 1107 \pm 70 \text{ (stat.)} \pm 43 \text{ (syst.)}$ 

Acceptance x efficiency correction evaluated by using embedded  $\Upsilon(1S)$  MC in data.

The dominant sources of systematic uncertainty entering in the  $R_{AA}$  are: the signal extraction (4-7%) and the interpolated pp cross section (8-12%).

SQM - 30/06/2016

11



#### *R*<sub>AA</sub> as a function of centrality:







#### $R_{AA}$ (5.02 TeV, 0-90%) = 0.40 ± 0.03 (stat.) ± 0.04 (syst.)

Clear  $\Upsilon(1S)$  suppression, Decrease of  $R_{AA}$  from peripheral to central Pb-Pb collisions.

Hint for a decreasing trend from most central to forward rapidity but remains compatible within uncertainties.



#### **Collision energy comparison:**





 $R_{AA} (5.02 \text{ TeV}, 0.90\%) = 0.40 \pm 0.03 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$  $R_{AA} (2.76 \text{ TeV}, 0.90\%) = 0.30 \pm 0.05 \text{ (stat.)} \pm 0.04 \text{ (syst.)}$ 

Larger  $R_{AA}$  values at 5.02 TeV than at 2.76 TeV but remain compatible within uncertainties.

SQM - 30/06/2016

Upsilon production measurements in p-Pb and Pb–Pb collisions at 5.02 TeV with ALICE



#### **Collision energy comparison:**





Data comparison by using the same centrality classes at both energies.

**Results are compatible within uncertainties** 

Note that transport model (Emerick et al.) predicts a small decrease (up to 5%) of this  $R_{AA}$  ratio moving from peripheral to central collisions.



#### **Model comparison:**



#### Transport models:

- A. Emerick, X. Zhao and R. Rapp: EPJA48 (2012) 72
  - Band: upper limit no shadowing, lower limit shadowing (up to a reduction of 25%),
  - Feed-down taken from ALICE and LHCb Collaborations,
  - Regeneration component include.
- K. Zhou, N. Xu, Z. Xu and P. Zhuang: PRC 89 05911 (2014)
  - Band: different sets of feed-down fractions,
  - CNM: shadowing from EKS98
  - No regeneration component.

Transport models reproduce qualitatively the centrality dependence. Emerick et al. model underestimates the suppression for most central collisions.

## No strong indication of direct Y(1S) suppression in most central collisions (considering a suppression of ~30% from feed-down and ~30% from CNM effects)

SQM - 30/06/2016

Upsilon production measurements in p-Pb and Pb–Pb collisions at 5.02 TeV with ALICE

**NEW** 



#### **Model comparison:**



16



Hydrodynamic model:

- M. Strickland et al.: arXiv:1605.03561
  - Thermal suppression in hydrodynamic + anisotropic screening model,
  - Band: different values of  $\eta$ /s ratio
  - Initial momentum-space anisotropy  $\xi_0 = 0$
  - No regeneration component
  - No CNM effects

The model can reproduce the data within uncertainties.

The predicted shape in the most forward rapidity region goes in the opposite way with respect to the data.



## Conclusion

ALICE has measured the  $\Upsilon(1S)$  production both in p-Pb and Pb-Pb collisions at 5.02 TeV with the Muon Spectrometer.

#### **p-Pb collisions:**

- Indication of  $\Upsilon(1S)$  suppression at forward rapidity,
- Indication of smaller anti-shadowing than suggested by the models at backward rapidity,
- All models can reproduce the data within uncertainties.

#### **Pb-Pb collisions:**

- $\Upsilon(1S)$   $R_{AA}$  shows a stronger suppression with increasing centrality at forward rapidity,
- Results at 2.76 and 5.02 TeV are compatible within uncertainties,
- No strong indication of direct  $\Upsilon(1S)$  suppression in the most central collisions,
- Models including CNM effects are able to reproduce the data at 5 TeV.

#### **Outlooks:**

More statistics and higher luminosity coming soon during LHC run-2:

- p-Pb data at the end of this year  $\rightarrow$  constrain the models,
- Pb-Pb data at the end of the LHC run 2 (up to  $L_{int} = 1 \text{ nb}^{-1}$  expected).

Thank you for your attention

17