Charmonium Production in pp, pPb and PbPb with CMS

Songkyo Lee (Korea Univ.) on behalf of the CMS Collaboration

SQM2016
UC Berkeley, Berkeley, CA, United States
28th June 2016
Motivation

- **Quarkonia** - important probes in Heavy Ion collisions
 - Produced by gluon-gluon hard scattering in the early stage of collisions
 - Sensitive to gluon Parton Distribution Functions
 - Experience the full evolution of the medium

- **Cold Nuclear Matter effects (CNM)**
 - e.g.)
 - Modification of PDFs
 - Initial state energy loss
 - Nuclear absorption

- **Hot and Dense Medium effects (QGP)**
 - e.g.)
 - Debye screening - suppression
 - Recombination - enhancement
CMS Acceptance for Charmonia

- Charmonia reconstructed via $\mu^+\mu^-$ decay channel
 - Easy to detect with excellent momentum resolution
- Kinematic coverage of CMS
 - $|y| < 2.4$
 - p_T down to 0 GeV/c at forward ($1.6 < |y| < 2.4$)
 - $p_T > 6.5$ GeV/c at mid-rapidity due to B field

![Muon Efficiency Diagram]

J/ψ cross sections in pp

![Cross Section Graph]

Lumi. uncertainty, 11%, not shown

0 GeV 6.5 GeV

28th June 2016
Songkyo Lee, SQM2016
Outline

Probe CNM effects

- J/ψ in **Ultra Peripheral PbPb Collisions**
- J/ψ in pPb Collisions

![CMS-PAS HIN-14-009]

Probe CNM + QGP effects

- J/ψ in PbPb Collisions
- ψ(2S) in PbPb Collisions

![CMS-PAS HIN-12-014]

![PRL 113 (2014) 262301]

arXiv:1605.06966, submitted to PLB
Ultra Peripheral PbPb @ 2.76 TeV
CNM physics

- nuclear PDFs: $R_i^A(x, Q^2) = \frac{f_i^p/A(x, Q^2)}{f_i^p(x, Q^2)}$ ← proton PDF inside nucleus
 $\frac{f_i^p(x, Q^2)}{f_i^p(x, Q^2)}$ ← proton PDF

- CMS covers a broad range in Bjorken-x (gluon shadowing)
- Measurement in low x is crucial to understand the CNM effects and constrain various theoretical models
J/ψ in Ultra Peripheral PbPb

- Photon-induced reactions
 - b (impact parameter) > 2R (nucleus radius)
 - Cross sections \propto (gluon density)2
 - Clean probes with low background for gluon PDFs ($10^{-5} < x < 10^{-2}$)

- Event selection
 - UPC requirement
 - low activity in Hadron Forward Calorimeter
 - J/ψ - exactly two muon tracks
 - Forward Neutron
 - detection in Zero Degree Calorimeter
 - (X_n0_o) break-up mode selected
 (neutrons on one side, nothing on the other side)

$\gamma + \text{Pb} \rightarrow \text{J/ψ} + \text{Pb}$

CMS

$\rho_{\gamma}(\mu^{+}\mu^{-}) < 1.0$ GeV

$1.8 < |y(\mu^{+}\mu^{-})| < 2.3$

down to $p_T \sim 0$ GeV

arXiv:1605.06996

28th June 2016
Songkyo Lee, SQM2016
Different Interactions in UPC

- **Coherent J/ψ**
 - Photon couples to “a whole nucleus”
 - $p_T < 0.15$ GeV/c
- **Incoherent J/ψ**
 - Photon couples to “a single nucleon”
 - $0.15 < p_T < 1.05$ GeV/c
- **Two photon → Dimuon**
 - QED Background

- **MC(STARLIGHT) template fit to extract coherent contributions**
Coherent J/ψ cross sections

- **Impulse approximation** neglects all nuclear effects
- **Leading twist approximation** includes an effective gluon shadowing

- Results favor a model with shadowing effects
- Complementary to ALICE covering different rapidity range
pPb @ 5.02 TeV
Separation of prompt & non-prompt

- 2D fit to “dimuon mass” and “decay length”
 - Prompt: direct J/ψ or feed down from ψ' and X_c
 - Non-prompt: from B hadron decays

- Lifetime of B ~ O(500) μm/c
- IP resolution of CMS
 - transverse ~ 25-90 μm
 - longitudinal ~ 45-150 μm

\[
\ell_{J/\psi} = L_{xy} \frac{m_{J/\psi}}{p_T}
\]

- CMS Preliminary
 - $1.5 < y_{CM} < 1.93$
 - $3 < p_T < 4$ GeV/c

Counts / 20 MeV/c²

Counts / 80 μm
J/ψ in pPb - cross section

- Wide range in rapidity and \(p_T \) bins
 - \(-2.87 < y_{CM} < 1.93\) (\(-2.4 < y_{lab} < 2.4\))
 - \(2 < p_T < 30\) GeV/c (down to lower \(p_T \) at most forward)

CMS Preliminary 34.6 nb\(^{-1}\) (pPb 5.02 TeV)

Prompt J/ψ

Global uncertainty : 3.5%

- Forward (p-going)
- Backward (Pb-going)

CMS-PAS HIN-14-009
\(R_{FB}(p_T, y) = \frac{\frac{d^2\sigma(p_T, y > 0)}{dp_T dy}}{\frac{d^2\sigma(p_T, y < 0)}{dp_T dy}} \)

\(= \frac{\text{p-going (x} \sim 10^{-4}\text{)}}{\text{Pb-going (x} \sim 10^{-2}\text{)}} \)

- \(R_{FB} < 1 \) at low \(p_T \)
- Clue for other effects beyond presented nPDF predictions?
J/ψ in pPb - event activity

- Event activity characterized by $E_{T}^{HF|\eta|>4}$
- Transverse energy deposited in Hadron Forward Calorimeter (HF) at $4 < |\eta| < 5.2$
- Fraction of minimum bias events:

| | $E_{T}^{HF|\eta|>4}$ | $\langle E_{T}^{HF|\eta|>4} \rangle$ | Frac |
|---|------------------|-----------------|------|
| pPb | 0–20 | 9.4 | 73% |
| min-bias | 20–30 | 24.3 | 18% |
| min-bias | 30–120 | 37.2 | 9% |

- R_{FB} decreases with increasing event activity
- **Stay Tuned!** R_{pPb} coming soon with 2015 pp at same $\sqrt{s_{NN}}$
PbPb @ 2.76 TeV
J/ψ in PbPb

- Nuclear modification factor

\[R_{AA} = \frac{1}{T_{AA}} \cdot \frac{dN_{AA}}{d\sigma_{pp}} = \frac{L_{int}^{pp}}{T_{AA}N_{MB}} \cdot \frac{N_{J/\psi}^{PbPb}}{N_{J/\psi}^{PP}} \cdot \frac{\epsilon_{pp}}{\epsilon_{PbPb}} \]

- More suppressed in more central collisions
- No significant p_T and rapidity dependence
$\psi(2S)$ in PbPb

- Double Ratio:

$$\frac{\left[\frac{\psi(2S)}{J/\psi} \right]_{AA}}{\left[\frac{\psi(2S)}{J/\psi} \right]_{pp}} = \frac{R_{AA}(\psi(2S))}{R_{AA}(J/\psi)}$$

- CMS PbPb & pp $\sqrt{s_{NN}} = 2.76$ TeV

- At high p_T & mid-rapidity: consistent with sequential melting
- At low p_T & forward: hint of recombination?

2015 PbPb @ 5.02 TeV
Stay Tuned!
Summary

• CNM effects probed by J/ψ in pPb
 • \(R_{FB} < 1 \) especially at low \(p_T \)
 • \(R_{FB} \) decreases with increasing event activity

• Coherent J/ψ photo-production in UPC PbPb
 • Evidence for gluon shadowing at low \(x \) region (at low \(Q^2 \))

• Suppression of J/ψ and \(ψ(2S) \) in PbPb
 • J/ψ is more suppressed in more central collisions
 • \(ψ(2S) \) is more suppressed than J/ψ at higher \(p_T \) & mid-y, and less suppressed at lower \(p_T \) & forward y
Backup
• Large coverage (muon & tracker $|\eta| < 2.4$)
• Highly selective trigger & muon ID in the muon system
• Excellent momentum and vertex resolution of the tracking system
two photon interaction
Centrality? Event activity?

- Centrality in PbPb
 - Related to the overlap fraction of the geometrical cross sections

- Event-activity variables in pPb
 - E_T^{HF}: raw transverse energy deposited in forward region HF ($4<|\eta|<5.2$)
In pPb, the correlation between the centrality variable and N_{coll} is very loose.
QGP physics

• Debye screening (suppression)
 • Loosely bound states (with smaller binding energies) melt at lower temperature
 • Sequential melting of the quarkonia ⇒ Thermometer of QGP

<table>
<thead>
<tr>
<th>Resonance</th>
<th>J/ψ</th>
<th>Ψ'</th>
<th>Υ(1S)</th>
<th>Υ(2S)</th>
<th>Υ(3S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass [GeV]</td>
<td>3.10</td>
<td>3.68</td>
<td>9.46</td>
<td>10.02</td>
<td>10.36</td>
</tr>
<tr>
<td>ΔE [GeV]</td>
<td>0.64</td>
<td>0.05</td>
<td>1.10</td>
<td>0.54</td>
<td>0.20</td>
</tr>
<tr>
<td>Radius [fm]</td>
<td>0.25</td>
<td>0.45</td>
<td>0.14</td>
<td>0.28</td>
<td>0.39</td>
</tr>
</tbody>
</table>

• Recombination (enhancement)
 • combination of quarks and antiquarks which are initially produced in “different” nucleon-nucleon collisions
Non-prompt J/ψ in pPb - R_{FB}

- **Forward-to-Backward Ratio** :
 \[
 R_{FB}(p_T, y) = \frac{d^2\sigma(p_T, y > 0)/dp_Tdy}{d^2\sigma(p_T, y < 0)/dp_Tdy}
 \]

- **Forward (y>0)**: proton-going

- p_T dependence less significant compared to prompt J/ψ

CMS Preliminary 34.6 nb$^{-1}$ (pPb 5.02 TeV)
J/ψ in pPb - event activity

same y_{CM}
different p_T

CMS Preliminary 34.6 nb$^{-1}$ (pPb 5.02 TeV)

R_{FB}

$E_T^{\text{HF } |\eta|>4}$ [GeV]

1.5 < $|y_{CM}|$ < 1.93

5 < p_T < 6.5 GeV/c

6.5 < p_T < 30 GeV/c

same p_T
different y_{CM}

CMS Preliminary 34.6 nb$^{-1}$ (pPb 5.02 TeV)

R_{FB}

$E_T^{\text{HF } |\eta|>4}$ [GeV]

6.5 < p_T < 30 GeV/c

0.0 < $|y_{CM}|$ < 0.9

0.9 < $|y_{CM}|$ < 1.5

1.5 < $|y_{CM}|$ < 1.93

28th June 2016
Songkyo Lee, SQM2016
J/ψ in pPb - event activity

same y_{CM} different p_T

same p_T different y_{CM}

CMS Preliminary 34.6 nb$^{-1}$ (pPb 5.02 TeV)

Non-prompt J/ψ

28th June 2016

Songkyo Lee, SQM2016
\(Q_{pPb} \) vs centrality (ALICE)

- \(Q_{pPb} \) decreases with increasing centrality at forward
- \(Q_{pPb} \) is rather flat or slightly increasing at backward
- Both in experimental data, and in CNM theoretical predictions
Comparison with other experiments

• Prompt J/ψ:

• Non-prompt J/ψ:

• Trends vs. p_T and y are similar for all 4 experiments

ALICE: JHEP 1402 (2014) 073
ATLAS: arXiv.1505.08141
LHCb: JHEP 1402 (2014) 072
Comparison with other experiments

- Points are plotted in the middle of the bin

ATLAS : arXiv.1505.08141

LHCb : JHEP 1402 (2014) 07
Comparison with other experiments

- Points are plotted in the middle of the bin

ATLAS : arXiv.1505.08141

LHCb : JHEP 1402 (2014) 07
Non-prompt J/ψ in PbPb

- Nuclear modification factor

$$R_{AA} = \frac{1}{T_{AA}} \cdot \frac{dN_{AA}}{d\sigma_{pp}} = \frac{L_{int}^{pp}}{T_{AA} N_{MB}} \cdot \frac{N_{PbPb}^{J/\psi}}{N_{pp}^{J/\psi}} \cdot \frac{\epsilon_{pp}}{\epsilon_{PbPb}}$$

- $R_{AA} < 1$: suppression
- $R_{AA} = 1$: no modification compared to pp
- $R_{AA} > 1$: enhancement

- More suppressed with increasing centrality (less than prompt)
- No significant p_T and rapidity dependence
prompt J/psi (differential)

- No strong dependence on rapidity at high p_T
- At forward, lower p_T J/ψ is slightly less suppressed in most central
Non-prompt J/psi (differential)

- Rapidity dependence
 - CMS Preliminary
 - PbPb $\sqrt{s_{NN}} = 2.76$ TeV
 - Non-prompt J/ψ
 - $|y|<1.2$
 - $1.2<|y|<1.6$
 - $1.6<|y|<2.4$
 - $6.5<p_T<30$ GeV/c
 - $3<p_T<6.5$ GeV/c

- p_T dependence
 - CMS Preliminary
 - PbPb $\sqrt{s_{NN}} = 2.76$ TeV
 - Non-prompt J/ψ
 - $|y|<1.2$
 - $1.2<|y|<1.6$
 - $1.6<|y|<2.4$
 - $6.5<p_T<30$ GeV/c
 - $3<p_T<6.5$ GeV/c

- No strong dependence on rapidity at high p_T
- At forward, lower p_T J/ψ has strong dependence and less suppressed than higher p_T J/ψ

28th June 2016
Songkyo Lee, SQM2016
Comparison with other exp.

PbPb Preliminary $\sqrt{s_{NN}} = 2.76$ TeV

- CMS: prompt J/ψ
 - $|y| < 2.4$
 - $6.5 < p_T < 30$ GeV/c

- ALICE: inclusive J/ψ
 - $2.5 < y < 4.0$

AuAu $\sqrt{s_{NN}} = 200$ GeV

- STAR: J/ψ (arXiv:1208.2736)
 - $|y| < 1.0$
 - $p_T > 5$ GeV/c

28th June 2016

Songkyo Lee, SQM2016
Comparison with theory

CMS Preliminary

PbPb $\sqrt{s_{NN}} = 2.76$ TeV

- Vitev: 0-10%, y~0
 - Rad E loss+CNM
 - Rad E loss+CNM+Dissoc

- WHDG: 0-80%, y~0
 - Rad+Coll E loss

- Buzatti: 0-100%, y~0
 - CUJET preliminary

- He,Fries,Rapp: 0-100%, y~0
 - HF transport

- Uphoff et al: b=5 fm,|y|<2.4
 - BAMPS

- MC@sHQ+EPOS2: 0-100%, y~0
 - col, col+rad LPM

- b-quarks: 0-100% |η|<2.4
 (via secondary $J/\psi(\mu^+\mu^-)$)

p_T (GeV/c) vs R_{AA}
J/ψ azimuthal anisotropy

- **Elliptic flow (v_2)**
 - Important to understand the dynamics of heavy-ion collision

- **In non-central collisions**
 - Asymmetry in the collective expansion
 - Path-length dependent absorption

- **Reflected in the azimuthal distribution of particle yields**

\[
\frac{1}{N_{\text{total}}} \cdot \frac{d^2 N}{d\phi} \propto 1 + 2v_2 \cos(2\Delta \phi)
\]
J/ψ v2 in PbPb

- J/ψ has a non-zero v2: \(0.054 \pm 0.01\text{(stat.)} \pm 0.006\text{(syst.)}\)
- No strong centrality, \(p_\text{T}\) and rapidity dependence
Non-prompt J/ψ in PbPb

- J/ψ has a non-zero $v2$: 0.054 ± 0.01 (stat.) ± 0.006 (syst.)
- No strong centrality, p_T and rapidity dependence
Non-prompt J/ψ in PbPb

- J/ψ v$_2$ at low p$_T$ is much smaller than hadron v$_2$ while higher p$_T$ shows similar v$_2$
- D$_0$ v2 has similar trend to hadron rather than J/ψ