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Corrected	RP	res	&	combinatoric	bkgrnd	&	feed-down	
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•  Subtrac+ng	residual	effect	from	combinatoric	background	below	mass	peak	
•  Correc+ng	for	feed-down	from	Sigma0	

	

•  previous	STAR	results	(corrected	for	sign)	con+nue	systema+cs	
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•  A	significant	frac+on	(~30%)	of	our	Lambdas	are	actually	feed-down	from	Sigma0	
•  The	daughter	Lambda	tends	to	have	spin	direc+on	opposite	that	of	the	parent	Sigma	

sta+s+cal	errors	only.	

Mike Lisa, UCLA vorticity Workshop Feb 2016

• Global Polarization: more fermions have spin direction parallel or 
anti-parallel to the direction of global orbital angular momentum 

• How to build the bridge between angular momentum and spin 
polarization?
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Spin polarization in Equilibrium
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Spin polarization in equilibrium
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Quantum Kinetic Theory
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ensemble average of the operator Ô. Note that in Eq. (1)
we have neglected the electromagnetic interaction. Using
the Dirac equation for a fermion with mass m, one can
derive the quantum kinetic equation for the fermion’s
Wigner function [26, 27],


�
µ

✓
pµ +

i

2
~@µ

x

◆
�m

�
W (x, p) = 0. (2)

The Wigner function is a 4 ⇥ 4 matrix in Dirac space
and can be decomposed into 16 independent generators
of the Clifford algebra. The coefficients correspond to
the scalar, pseudoscalar, vector, axial vector and tensor
components, respectively. The kinetic equation for the
Wigner function in Eq. (2) will lead to a system of equa-
tions for these components which can be solved through a
gradient expansion. The spin polarization is given by the
axial component of the Wigner function. At the next-to-
leading order in gradient expansion, one obtains [23] the
polarization density for on-shell fermions

⇧µ(x) = ~!
µ

2
�

ˆ
d3p

(2⇡)3
fFD(x, p) [1� fFD(x, p)] ,(3)

where the vorticity is defined as !µ = ⌦̃µ⌫u
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), fFD(x, p) is the Fermi-Dirac distribution,

fFD(x, p) =
1

e�[u·p⌥µ] + 1
, (4)

for fermions (�) and anti-fermions (+) on their mass-
shell (p2 = m2) with the chemical potential µ, the tem-
perature T = 1/� and the fluid 4-velocity u

µ

. The energy
splitting between two spin states due to spin-vorticity
coupling is proportional to local vorticity. Therefore, the
spin polarization density is proportional to the vorticity
vector and the fermion number susceptibility at the next-
to-leading-order in gradient expansion. For a finite chem-
ical potential, the polarization per particle for fermions
is always smaller than for anti-fermions [23].

Assuming the hydrodynamic evolution of dense mat-
ter in high-energy heavy-ion collisions, one can calculate
the average polarization vector for final spin-1/2 hadrons
with momentum p [22, 23],

Pµ(p) ⌘ d⇧µ(p)/d3p

dN/d3p

=
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´
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�
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, (5)

where d⌃
�

is the differential volume vector on the
Cooper-Frye hyper-surface at the hadronic freeze-out
temperature Tf . We will work in the Bjorken-Milne co-
ordinate wtih Xµ = (⌧, x, y, ⌘), where ⌧ =

p
t2 � z2 and

the spatial rapidity is defined as tanh ⌘ = z/t.
(3+1)D viscous hydrodynamic model. – We will use

the newly developed CCNU-LBNL viscous (CLVisc) hy-
drodynamic model with event-by-event fluctuating ini-
tial conditions from the AMPT model to calculate the

⇤ spin polarization in high-energy heavy-ion collisions.
The CLVisc hydrodynamic model [28] is a viscous exten-
sion of an ideal (3+1)D hydrodynamic model [29] that
parallelizes the Kurganov-Tadmor (KT) algorithm [30]
for hydrodynamic evolution and Cooper-Frye particliza-
tion on graphics processing units (GPU) using OpenCL
(Open Computing Language for parallel programming of
heterogeneous systems). In this study, we use time steps
�⌧ = 0.005 fm, the transverse spacing �x = �y = 0.1
fm and the longitudinal spacing �⌘ = 0.1. The number
of grid points are 301, 301 and 181 for the x, y and ⌘
direction, respectively.

The initial conditions for the CLVisc model are con-
structed from the AMPT model [25] at an initial proper
time ⌧0 with Gaussian smearing in both transverse coor-
dinates and spatial rapidity. The overall normalization
of the initial conditions on the energy-momentum tensor
is adjusted to fit the final charged hadron multiplicity at
mid-rapidity in the most central collisions and kept fixed
for all other centralities [29]. The initial thermalization
time is set at ⌧0 = 0.4 fm at the Relativistic Heavy-ion
Collider (RHIC) energies and ⌧0 = 0.2 fm at the Large
Hadron Collider (LHC). The partial chemical equilibrium
EoS s95p-PCE165-v0 parametrizing lattice QCD calcula-
tions [31] is used in the CLVisc model. We also assume a
zero baryon chemical potential and a hadronic freeze-out
temperature Tf = 137 MeV. In the CLVisc simulations
presented in this Letter we have neglected the vorticity
term in the viscous stress tensor. We also neglect viscous
corrections to the final hadron spectra in the calculation
of hyperon spin polarization. Both effects can be included
in future studies.

The AMPT model uses Heavy-Ion Jet INteraction
Generator (HIJING) [32] for the initial parton produc-
tion from both incoherent semihard scatterings and co-
herent string formation. A string-melting mechanism is
used to convert strings into partons which undergo the
parton transport process before hadronization through
parton coalescence. Therefore, the AMPT initial condi-
tions for CLVisc simulations at the initial proper time ⌧0
contain fluctuations in both transverse and longitudinal
direction. The longitudinal variation of the initial en-
ergy density contains a systematic linear twist (rotation)
and random fluctuation of the event plane, both leading
to decorrelation of anisotropic flow of final hadrons with
large pseudo rapidity gaps [33, 34].

Convective flow and vorticity distribution. – The initial
conditions constructed from the AMPT/HIJING model
contain fluctuations in the local fluid velocity [33] due to
string-breaking and mini-jets. These fluctuations in fluid
velocity and the energy density lead to non-vanishing lo-
cal vorticity as well as global net vorticity along the or-
bital angular momentum of non-central collisions [14].
Collective expansion can also generate structures in the
fluid velocity (radial flow and anisotropic flow for exam-
ple) as well as in the vorticity. Shown in Fig. 1 are distri-
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Fermions become polarized in a vortical fluid due to spin-vorticity coupling. The spin polarization
density is proportional to the local fluid vorticity at the next-to-leading order of a gradient expansion
in a quantum kinetic theory. Spin correlations of two ⇤-hyperons can therefore reveal the vortical
structure of the dense matter in high-energy heavy-ion collisions. We employ a (3+1)D viscous
hydrodynamic model with event-by-event fluctuating initial conditions from A MultiPhase Transport
(AMPT) model to calculate the vorticity distributions and ⇤ spin correlations. The azimuthal
correlation of the transverse spin is shown to have a cosine form plus an offset due to a circular
structure of the transverse vorticity around the beam direction and global spin polarization. The
longitudinal spin correlation shows a structure of vortex-pairing in the transverse plane due to the
convective flow of hot spots in the radial direction. The dependence on colliding energy, rapidity,
centrality and sensitivity to the shear viscosity are also investigated.
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Introduction. – Low-energy nuclear reactions can cre-
ate rotating and deformed compound nuclei that carry a
large amount of orbital angular momentum of the collid-
ing nuclei [1]. The large orbital angular momentum in
non-central high-energy heavy-ion collisions cannot pro-
duce a rotating quark-gluon plasma because of the soft
equation of state (EoS). It should instead lead to fluid
shear and non-vanishing local fluid vorticity [2–14]. In
such a vorticular fluid, the spin-orbital coupling polarizes
the spin of fermions (quarks and baryons) [2–12] along
the direction of the vorticity.

The mechanism of fermion polarization in a vorticular
fluid is very similar to the Chiral Vortical Effect [15–20].
The axial current induced by vorticity leads to the Local
Polarization Effect [20] as a result of the spin-vorticity
coupling for chiral or massless fermions [21]. Consid-
ering the next-to-leading order in the gradient expan-
sion for massive fermions, one can show that the fermion
spin polarization density is directly proportional to the
local vorticity [22, 23]. Consequently, final state baryons
such as hyperons should also be polarized along the di-
rection of the local fluid vorticity at the freeze-out hyper-
surface. Measurements of the final-state hyperon polar-
ization, which are feasible through the parity-violating
decay [24], will shed light on the vortical structure and
transport properties of the strongly coupled quark-gluon
plasma (sQGP) in high-energy heavy-ion collisions.

In this Letter, we investigate the vortical structure of
the sQGP in high-energy heavy-ion collisions in a (3+1)D
viscous hydrodynamic model with event-by-event fluctu-
ating initial conditions from the AMPT model [25]. We

show that the transverse vorticity of the sQGP has a cir-
cular structure around the beam direction due to the con-
vective longitudinal flow in addition to the global align-
ment along the direction of the orbital angular momen-
tum of non-central collisions. The longitudinal vorticity,
however, has a vortex-pairing structure in a given trans-
verse plane due to the convective radial flow of hot spots.
We propose to use the spin correlation of two hyperons
to study these vortical structures of dense matter. We
will calculate hyperon spin correlations in the azimuthal
angle and study their dependence on collision energy, ra-
pidity, centrality and the shear viscosity. We neglect the
spin polarization due to magnetic fields in this study.

Fermion polarization in a vortical fluid. – Interactions
in a medium with local vorticity polarize a fermion’s
spin due to spin-orbital coupling [2]. In thermal equi-
librium such a coupling between spin and local vorticity
effectively shifts the energy level of fermions with differ-
ent spin states. This will lead to different phase space
distributions for fermions with different spin states and
therefore spin polarization along the direction of the local
vorticity [22]. One can calculate the spin polarization in
thermal equilibrium within a quantum kinetic approach
[23].

In the quantum kinetic theory, the fermion distribution
is described by the Wigner function W (x, p) in space-time
x and 4-momentum p,

W
↵�

(x, p) =

ˆ
d4y

(2⇡)4
e�ip·yh ̄

�

(x+
1

2
y) 

↵

(x� 1

2
y)i, (1)

where  (x) and  ̄(x) are fermionic fields, hÔi denotes the
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Quantum Kinetic Equation for Wigner function:
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If µs = µ does not depend on s, we see immediately that Πα = 0. In this case the non-vanishing polarization can
only come from the first-order contribution from the vorticity term of Aα

(1)(x, p) in Eq. (36),
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, (47)

where we have removed the spin dependence in the chemical potential, µs = µ, and we have used the fact that the
spatial part of pσ gives vanishing momentum integral. We see that the polarization density is proportional to the
vorticity vector ωα = Ω̃ασuσ and is the sum over contributions from fermions and anti-fermions.

We can also obtain the polarization density from the second (electromagnetic field) term of Aα
(1)(x, p) in Eq. (36),

Πα
B(x) =
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= −
1

4
!Q

ˆ

d4pF̃αλuλ
dV

dp0
δ(p2 −m2)

=
1

2
!QβBα

ˆ

d3p

(2π)3
1

Ep

{

eβ(Ep−µ)

[eβ(Ep−µ) + 1]2
−

eβ(Ep+µ)

[eβ(Ep+µ) + 1]2

}

, (48)

where we have used δ′(x) = −δ(x)/x and that the spatial part of pσ gives vanishing momentum intergal. Also we
have dropped the complete derivative term which is vanishing at the boundary in momentum space. We see that the
difference between Πα

B(x) from the magnetic field and Πα(x) from the voticity is that the contributions from fermions
and anti-fermions in Πα

B(x) have opposite signs while they have the same sign in Πα(x). In this paper we consider
only the polarization induced by the vorticity since it lasts longer and is stronger than the magnetic effect in later
stage of hydrodynamical evolution for massive hadrons.

To estimate the magnitude of Πµ(x) for fermions from Eq. (47), we can carry out the momentum integral in the
co-moving frame. After completing the integral over the momentum direction, we obtain the spin polarization density

Π(x) = !ω
1

4π2

ˆ ∞

0
d|p| |p|2

eβ(Ep∓µ)

[eβ(Ep∓µ) + 1]2
, (49)

for fermions (−) and anti-fermions (+). The particle number density for fermions and anti-fermions is given by

ρ(x) = 2

ˆ

d3p

(2π)3
1

eβ(Ep∓µ) + 1
=

1

π2

ˆ ∞

0
d|p|

|p|2

eβ(Ep∓µ) + 1
. (50)

The integrated polarization per particle Π(x)/ρ(x) for fermions or anti-fermions can be obtained by completing the
momentum integrals in Eqs. (49) and (50). We can also define the unintegrated ones with momentum dependence,
which is given by the following formula in the comoving frame,

Π(x,p)

ρ(x,p)
= !

ω

4

eβ(Ep∓µ)

eβ(Ep∓µ) + 1
, (51)

where we have defined Π(x,p) ≡ dΠ(x)/d|p| and ρ(x,p) ≡ dρ(x)/d|p|.
The numerical results for the unintegrated polarization per particle in Eq. (51) in the unit of the local vorticity

!ω are shown in Fig. 1 in the range βEp = [0, 10] and βµ = [0, 4]. At fixed values of energy βEp, we see that
Π(x,p)/ρ(x,p) is a decreasing (increasing) function of βµ for fermions (anti-fermions), but it always increases with
βEp at fixed βµ for both fermions and anti-fermions. The numerical results for the ratio of Π(x,p)/ρ(x,p) for
fermions to anti-fermions,

R =
[Π(x,p)/ρ(x,p)]fermion

[Π(x,p)/ρ(x,p)]anti−fermion
, (52)

are shown in Fig. 2. We see that Π(x,p)/ρ(x,p) for fermions is always less than that for anti-fermions, i.e. R < 1,
and R decreases with βµ and increases with βEp. When βEp is very large, the Fermi-Dirac distributions become
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Polarization from spin-vorticity coupling:

fermion anti-fermionvorticity
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Polarization fermion/anti-fermion
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• Because of  Pauli blocking, 
anti-fermions are easier to be 
polarized than fermions. 

• The effect is strong if we 
consider the constituent quark 
model— the polarization of 
Lambda equals to the 
polarization of strange quark.



Vorticity and shear flow
None-zero vorticity is associated with shear flow
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Shear flow in QGP

7

Decorrelation of event plane/anisotropic flow along ⌘

String length fluctuations

The initial condition for (3+1)D hydrodynamics is given by HIJING/AMPT model.
Where the length of soft strings is sensitive to beam energy and centrality.

L.G.Pang, H.Petersen, G.Y.Qin, V.Roy, X.N.Wang, Eur.Phys.J. A52 (2016) no.4, 97
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Motivation: vn in (3+1)D viscous hydro Is (2+1)D viscous hydrodynamics enough to constrain ⌘/s?

(3+1)D viscous hydrodynamics

r
µ

T

µ⌫ = 0 (1)

�µ⌫↵�

u

�r
�

⇡

↵�

= �⇡

µ⌫ � ⇡

µ⌫

NS

⌧

⇡

� 4
3
⇡

µ⌫r
�

u

� (2)

where

T

µ⌫ = ("+ P )uµ

u

⌫ � Pg

µ⌫ + ⇡

µ⌫ (3)

�µ⌫↵� =
1
2
(�µ↵�⌫� +�⌫↵�µ�)� 1

3
�µ⌫�↵� (4)

�µ⌫ = g

µ⌫ � u

µ

u

⌫

, g

µ⌫ = diag(1,�1,�1,�⌧

�2) (5)

" and P are the energy density and pressure, uµ is the fluid velocity vector. r
µ

is the
covariant derivative.

Constraints: P = P ("), u
µ

u

µ = 1, u
µ

⇡

µ⌫ = 0, ⇡µ

µ

= 0.

Positive ⇡

xx and ⇡

yy accelerate transverse expansion.

Prediction: negative ⌧

2
⇡

⌘⌘ ⇡ �(⇡xx + ⇡

yy) squeezes non-Bjorken longitudinal
expansion.

LongGang Pang Longitudinal fluctuations in (3+1)D viscous hydrodynamics 4 / 15

Method: (3+1)D viscous hydro

• CLVisc—A (3+1)D viscous hydrodynamics parallelized on GPU using OpenCL.                          
LG.Pang, Y.Hatta, XN.Wang & BW.Xiao Phys.Rev. D91 (2015) no.7, 074027  

• High performance computing cluster: GSI Green Cube, GPUs AMD FirePro s9150
8

Fig originally from Steffen A. Bass



Helmholtz-Hodge decomposition

F = �r�+r⇥A

�(r) =
1

4⇡

Z r0 · F(r0)
|r� r0| dV 0

A(r) =
1

4⇡

Z r0 ⇥ F(r0)

|r� r0| dV 0

Let F be a smooth and rapidly decaying vector fields 
in three dimension, it can be decomposed into a curl-
free component and a divergence-free component:

University of Vermont.

Is there local vorticity in QGP?

9

Divergence free (vorticity)Curl free

scalar potential

vector potential



Vorticity in QGP (trans. plane)

10
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Vorticity in QGP (reaction plane)

11

v
x

, v
⌘



Vorticity in QGP: rich structure
• Vortex pair in 2D  

• Vortex ring in 3D =         
Toroidal (smoke ring)     
vortical fluid 

• Azimuthal angle dependence. 

• Rapidity dependence

12

LG.Pang, H.Petersen, Q.Wang & 
XNW arXiv:1605.04024

• Vortex ring appears in both the 
transverse and longitudinal direction 

• It is thus interesting to study the 
spin correlation by Lucas V. Barbosa 

from WiKi Pedia

beam direction



Polarization on the freeze-out hyper surface

where ⌦

µ⌫
=

1

2

✏µ⌫⇢�@⇢(u�/T ) is the thermal vorticity

Becattini, F. et al. Annals Phys. 338 (2013) 32-49 arXiv:1303.3431

13

thermal vorticity = convective + acceleration + conduction
• convective: spatial gradients of fluid velocity 

• acceleration: temporal gradients of fluid velocity 

• conduction: spatial and temporal gradients of temperature

F.Becattini, L.P.Csernai, D.J.Wang, PRC88 (2013), 034905 Xie, Glastad, & Csernai PRC92 (2015) 
064901, F.Becattini, et el. EPJC 2015, 406, LG.Pang, H.Petersen, Q.Wang & XN.Wang arXiv:
1605.04024, I. Karpenko, CPOD 2016, Poland and SQM

Pµ ⌘ d⇧µ(p)/d3p

dN/d3p
=

~
4m

R
d⌃↵p↵⌦µ⌫p⌫nf (1� nf )R

d⌃↵p↵nf

RH.Fang, LG.Pang, Q.Wang & XN.Wang arXiv :1604.04036 

http://inspirehep.net/author/profile/Becattini%2C%20F.?recid=1223851&ln=en


Pb+Pb 2.76 TeV 20-30% 

Lambda spin correlation
• (a)                  azimuthal 

distribution due to local 
polarization (vortex ring). 

• Shifts means global 
polarization caused by global 
orbital angular momentum 

• Shear viscosity increases 
global polarization 

• (b) Longitudinal spin is 
captured by spin correlation

14

cos(��)



Lambda spin correlation
• (a) Polarization are 

stronger at lower beam 
energies and peripheral 
collisions. 

• (b) The longitudinal spin 
correlation is coupled to the 
transverse collision 
geometry  

• The beam energy 
dependence for longitudinal 
spin is weak.

15



Summary
• Vortical fluid is visible by bare eyes with Helmholtz-Hodge 

decomposition.  

• Fermions are locally polarized due to spin-vorticity coupling. 

• Fermions are globally polarized because of global orbital 
angular momentum. 

• Shear viscosity increases global polarization. 

• Global polarization has strong beam energy, collision geometry, 
rapidity and shear viscosity dependence. 

• Spin-vortex ring coupling can be studied in spin-spin 
correlation.

16



“Backups”



Vorticity in fluid dynamics

• Vorticity is pseudo-vector fields defined by the curl of fluid velocity vector.

~! ⌘ r⇥ ~u

Rigid-body-like vortex v ∝ r         Parallel flow with shear       Irrotational vortex v ∝ 1/r

From wikipedia by Jorge Stolfi

✔ ✔ ❌
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Vortex ring by fast jet

19
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FIG. 5: (color online) Vorticity generated by a fast “jet” traversing the system in the positive x direction. The arrows in
the left panel show the momentum density of fluid elements in the x-y plane, while the contour in the right panel shows the
x-component of the velocity in the y-z plane. The jet has been traveling for t = 11.52 fm/c through a static medium [26]. The
dashed arrows in the right panel indicate the expected direction of polarization of the Λ (out of plane for left panel, tangentially
in right panel). If the medium undergoing transverse and longitudinal expansion, the Λ position within the smoke-ring is
correlated with it’s mean momentum. Thus, measuring Λ polarization in the plane defined by its momentum and the jet
momentum should yield a positive net result
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