Vorticity and Λ polarization in event-by-event $(3+I) D$ viscous hydrodynamics

Long-Gang Pang
Frankfurt Institute for Advanced Studies

SQM @ UC. Berkeley, June 27-July 1, 2016

RH.Fang, LG.Pang, Q.Wang \& XN.Wang arXiv :1604.04036
LG.Pang, H.Petersen, Q.Wang \& XN.Wang arXiv:1605.04024路

HELMHOLTZ ASSOCIATION

Polarization in A+A

Mike Lisa, UCLA vorticity Workshop Feb 2016
Corrected RP res \& "combinatoric bkgrnd \& feed-down

Subtracting residual effect from combinatoric background below mass peak
Correcting for feed-down from Sigma0

- Global Polarization: more fermions have spin direction parallel or anti-parallel to the direction of global orbital angular momentum
- How to build the bridge between angular momentum and spin polarization?
Z.T. Liang, X. N.Wang, PRL. 94 (2005) IO230I, F. B., F. Piccinini,Ann. Phys. 323 (2008) 2452; F. B., F. Piccinini, J. Rizzo, PRC 77 (2008) 024906

Spin polarization in Equilibrium

Dirac Eq.

$$
\left[\gamma^{\mu}\left(i \partial_{\mu}+e_{q} A_{\mu}\right)-m\right] \psi(x)=0
$$

Spin: vorticity coupling Magnetic coupling

$$
\begin{aligned}
& \delta E_{s}=\frac{\hbar}{2} \mathbf{n} \cdot \omega \quad+\quad e_{q} \hbar \frac{\mathbf{n} \cdot \mathbf{B}}{E_{p}} \\
& \Pi=\frac{1}{2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left[f\left(E_{p}-\delta E_{s}\right)-f\left(E_{p}+\delta E_{s}\right)\right] \\
& \approx-\int \frac{d^{3} p}{(2 \pi)^{3}} \delta E_{s} \frac{\partial f\left(E_{p}\right)}{\partial E_{p}} \quad \text { gradient expansion } \\
& \text { fermion susceptibility }
\end{aligned}
$$

Becattini \& Ferroni, EJPC 52 (2007) 597, Betz, Gyulassy \& Torrieri, PRC 76 (2007) 044901, Becattini, Piccinini \& Rizzo, PRC 77 (2008) 024906, Beccatini, Csernai \& Wang, PRC 87 (2013) 034905, Xie, Glastad \& Csernai, PRC 92 (2015) 064901, Deng \& Huang, arXiv 1603.06117

Quantum Kinetic Theory

S.Pu, JH.Gao, ZT.Liang, Q.Wang \& XNW, PRL 109(2012) 232301 Wigner function: RH.Fang, LG.Pang, Q.Wang \& XN.Wang arXiv :1604.04036

$$
W_{\alpha \beta}(x, p)=\int \frac{d^{4} y}{(2 \pi)^{4}} e^{-i p \cdot y}\left\langle\bar{\psi}_{\beta}\left(x+\frac{1}{2} y\right) \psi_{\alpha}\left(x-\frac{1}{2} y\right)\right\rangle
$$

Quantum Kinetic Equation for Wigner function:

$$
\left[\gamma_{\mu}\left(p^{\mu}+\frac{i}{2} \hbar \partial_{x}^{\mu}\right)-m\right] W(x, p)=0
$$

Polarization from spin-vorticity coupling:

$$
\Pi^{\alpha}(x)=\frac{1}{2} \hbar \omega^{\alpha} \int \frac{d^{3} p}{(2 \pi)^{3}}\left\{\frac{e^{\beta\left(E_{p}-\mu\right)}}{\left[e^{\beta\left(E_{p}-\mu\right)}+1\right]^{2}}+\frac{e^{\beta\left(E_{p}+\mu\right)}}{\left.e^{\left.e^{\beta\left(E_{p}+\mu\right)}+1\right]^{2}}\right\}}\right.
$$

Polarization fermion/anti-fermion

$$
R=\frac{[\Pi / \rho]_{\text {fermion }}}{[\Pi / \rho]_{\text {anti-fermion }}}
$$

$$
\Pi \approx-\int \frac{d^{3} p}{(2 \pi)^{3}} \delta E_{s} \frac{\partial f\left(E_{p}\right)}{\partial E_{p}}
$$

- Because of Pauli blocking, anti-fermions are easier to be polarized than fermions.
- The effect is strong if we consider the constituent quark model- the polarization of Lambda equals to the polarization of strange quark.

RH.Fang, LG.Pang, Q.Wang \& XN.Wang arXiv :1604.04036

Vorticity and shear flow

y None-zero vorticity is associated with shear flow

vorticity:

$$
\omega_{z}=\partial_{x} v_{y}-\partial_{y} v_{x}
$$

circulation: $\quad \Gamma=\oint \vec{v} \cdot d \vec{r}=\iint \nabla \times \vec{v} \cdot d \vec{A}=\iint \vec{\omega} \cdot d \vec{A}$

Shear flow in QGP

The initial condition for $(3+1)$ D hydrodynamics is given by HIJING/AMPT model. Where the length of soft strings is sensitive to beam energy and centrality.

L.G.Pang, H.Petersen, G.Y.Qin, V.Roy, X.N.Wang, Eur.Phys.J. A52 (2016) no.4, 97

Method: (3+1)D viscous hydro

Fig originally from Steffen A. Bass

$$
\begin{align*}
\nabla_{\mu} T^{\mu \nu} & =0 \tag{1}\\
\Delta^{\mu \nu \alpha \beta} u^{\lambda} \nabla_{\lambda} \pi_{\alpha \beta} & =-\frac{\pi^{\mu \nu}-\pi_{\mathrm{NS}}^{\mu \nu}}{\tau_{\pi}}-\frac{4}{3} \pi^{\mu \nu} \nabla_{\lambda} u^{\lambda} \tag{2}
\end{align*}
$$

where

$$
\begin{align*}
T^{\mu \nu} & =(\varepsilon+P) u^{\mu} u^{\nu}-P g^{\mu \nu}+\pi^{\mu \nu} \tag{3}\\
\Delta^{\mu \nu \alpha \beta} & =\frac{1}{2}\left(\Delta^{\mu \alpha} \Delta^{\nu \beta}+\Delta^{\nu \alpha} \Delta^{\mu \beta}\right)-\frac{1}{3} \Delta^{\mu \nu} \Delta^{\alpha \beta} \tag{4}\\
\Delta^{\mu \nu} & =g^{\mu \nu}-u^{\mu} u^{\nu}, g^{\mu \nu}=\operatorname{diag}\left(1,-1,-1,-\tau^{-2}\right) \tag{5}
\end{align*}
$$

ε and P are the energy density and pressure, u^{μ} is the fluid velocity vector. ∇_{μ} is the covariant derivative.

- Constraints: $P=P(\varepsilon), u_{\mu} u^{\mu}=1, u_{\mu} \pi^{\mu \nu}=0, \pi_{\mu}^{\mu}=0$.
- CLVisc-A (3+1)D viscous hydrodynamics parallelized on GPU using OpenCL. LG.Pang, Y.Hatta, XN.Wang \& BW.Xiao Phys.Rev. D91 (2015) no.7, 074027
- High performance computing cluster: GSI Green Cube, GPUs AMD FirePro s9150

Is there local vorticity in QGP?

Curl free
Divergence free (vorticity)

$$
\mathbf{F}=-\nabla \Phi+\nabla
$$

scalar potential $\mathbf{\Phi}(\mathbf{r})=\frac{1}{4 \pi} \int \frac{\nabla^{\prime} \cdot \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime}$
vector potential $\mathbf{A}(\mathbf{r})=\frac{1}{4 \pi} \int \frac{\nabla^{\prime} \times \mathbf{F}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d V^{\prime}$

Helmholtz-Hodge decomposition University of Vermont.
Let \mathbf{F} be a smooth and rapidly decaying vector fields in three dimension, it can be decomposed into a curlfree component and a divergence-free component:

Vorticity in QGP (trans. plane)

divergence free $\tau=2.8 \mathrm{fm}$

Vorticity in QGP (reaction plane)

Vorticity in QGP: rich structure

- Vortex pair in 2D
- Vortex ring in 3D = Toroidal (smoke ring) vortical fluid

- Azimuthal angle dependence.
- Vortex ring appears in both the transverse and longitudinal direction
- It is thus interesting to study the spin correlation

Polarization on the freeze-out hyper surface

Becattini, F. et al. Annals Phys. 338 (2013) 32-49 arXiv:1303.3431 RH.Fang, LG.Pang, Q.Wang \& XN.Wang arXiv :1604.04036

$$
P^{\mu} \equiv \frac{d \Pi^{\mu}(p) / d^{3} p}{d N / d^{3} p}=\frac{\hbar}{4 m} \frac{\int d \Sigma_{\alpha} p^{\alpha} \Omega^{\mu \nu} p_{\nu} n_{f}\left(1-n_{f}\right)}{\int d \Sigma_{\alpha} p^{\alpha} n_{f}}
$$

where $\Omega^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \rho \sigma} \partial_{\rho}\left(u_{\sigma} / T\right)$ is the thermal vorticity

thermal vorticity = convective + acceleration + conduction

- convective: spatial gradients of fluid velocity
- acceleration: temporal gradients of fluid velocity
- conduction: spatial and temporal gradients of temperature
F.Becattini, L.P.Csernai, D.J.Wang, PRC88 (2013), 034905 Xie, Glastad, \& Csernai PRC92 (2015) 064901, F.Becattini, et el. EPJC 2015, 406, LG.Pang, H.Petersen, Q.Wang \& XN.Wang arXiv: 1605.04024, I. Karpenko, CPOD 2016, Poland and SQM

Lambda spin correlation

- (a) $\cos (\Delta \phi)$ azimuthal distribution due to local polarization (vortex ring).
- Shifts means global polarization caused by global orbital angular momentum
- Shear viscosity increases global polarization
- (b) Longitudinal spin is captured by spin correlation

Lambda spin correlation

- (a) Polarization are stronger at lower beam energies and peripheral collisions.
- (b) The longitudinal spin correlation is coupled to the transverse collision geometry
- The beam energy dependence for longitudinal spin is weak.

Summary

- Vortical fluid is visible by bare eyes with Helmholtz-Hodge decomposition.
- Fermions are locally polarized due to spin-vorticity coupling.
- Fermions are globally polarized because of global orbital angular momentum.
- Shear viscosity increases global polarization.
- Global polarization has strong beam energy, collision geometry, rapidity and shear viscosity dependence.
- Spin-vortex ring coupling can be studied in spin-spin correlation.
"Backups"

Vorticity in fluid dynamios

$$
\vec{\omega} \equiv \nabla \times \vec{u} \quad \text { From wikipedia by Jorge Stolfi }
$$

- Vorticity is pseudo-vector fields defined by the curl of fluid velocity vector.

Vortex ring by fast jet

Betz, Gyulassy, \& G. Torrieri PRC76:044901,2007

Fast "jet" traversing the system

