Updates to the chemical freeze-out line from the new data in p+p and A+A collisions

Viktor Begun

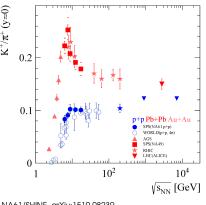
Jan Kochanowski University, Kielce

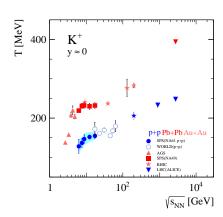
in collaboration with

V. Vovchenko and M. I. Gorenstein, arXiv: 1512.08025, PRC 2016

SQM 2016, 27 June 2016 - 1 July 2016

Motivation: the new p+p and updated A+A data at SPS





NA61/SHINE, arXiv:1510.08239

- The data are consistent with the **onset of deconfinement** close 30A GeV
- It is important to know the "baseline": the effects of the non-QGP phenomena
- The NA61/SHINE data are much more precise test for the models (see extra slides)

Hadron resonance gas

In thermal models the calculations are performed using the sum of contributions of **all hadrons** (stable and resonance) to the partition function

$$\ln \mathbf{Z} = \sum_k \ln \mathbf{Z}_k^{\text{stable}} + \sum_k \ln \mathbf{Z}_k^{\text{res}}$$

In practice, one uses the list of existing particles from the **PDG**. In the limit where the decay widths of resonances are neglected, one has

$$\ln Z_k^{\text{stable,res}} = g_k V \int \frac{d^3 p}{(2\pi)^3} \ln \left[1 \pm e^{(\mu - E_p)/T} \right]^{\pm 1}$$

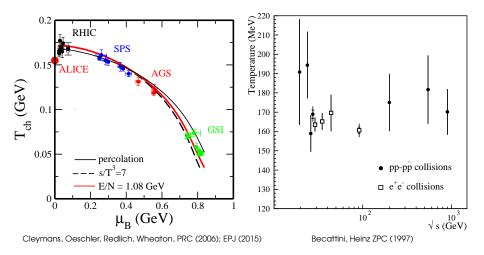
where g_k is the spin-isospin degeneracy, \emph{V} - \emph{volume} , \emph{I} - $\emph{temperature}$, μ - $\emph{chemical}$

potential, \vec{p} - momentum, M_k - the mass of the resonance, $E_p = \sqrt{\vec{p}^2 + M_k^2}$ - the energy, and the \pm corresponds to fermions or bosons. As a better approximation for the partition function, one can take into account the **finite widths** of resonances:

$$\ln Z_k^{\text{res}} = g_k V \int d_k(M) dM \int \frac{d^3 p}{(2\pi)^3} \ln \left[1 \pm e^{(\mu - E_p)/I}\right]^{\pm 1}$$

For narrow resonances one can approximate $d_k(M)$ with a (non-relativistic or relativistic) normalized **Breit-Wigner** function peaked at M_k .

Temperature in A+A (GCE, sCE) and p+p (CE) collisions



- The temperature in A+A follows the common freeze-out line, except for the LHC
- The **temperature** in **p+p** was found **high**, with **unclear** behavior **at** the **SPS** energies

Freeze-out phase diagram in A+A (GCE)

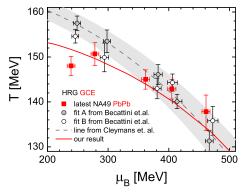
The **change** in the parametrization of the chemical **freeze-out line** is a combination of two effects:

- The extension of the list of particles
- The changes in the experimentally measured particle set

We have analyzed different cuts for the maximal resonance mass, \textit{M}_{cut} , included in the table of particles.

Varying the cut in the range
 1.7 < M_{cut} < 2.4 GeV, we have found that the inclusion of heavy resonances may decrease the temperature up to 10 MeV.

The effect is stronger at larger energy.



Cleymans, Oeschler, Redlich, Wheaton, PRC (2006) Becattini, Manninen, Gazdzicki, PRC (2006) V.B., Vovchenko, Gorenstein, PRC (2016)

A problem of the **THERMUS 3.0** code **was** found and **corrected**. THERMUS does not take into account the resonance decay contribution to mean multiplicities of particles which are marked as unstable. As a result, yields of ϕ , K^* (892), or Λ (1520) can be underestimated by up to 25%.

Freeze-out phase diagram in A+A (GCE, sCE)

The grey band is the parametrization

(Cleymans, Oeschler, Redlich, Wheaton, PRC (2006)):

$$T_{A+A}(\mu_B) = \sigma - b\mu_B^2 - c\mu_B^4$$

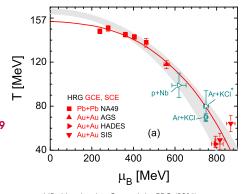
$$\mu_B = \frac{d}{1 + e\sqrt{s_{NN}}}$$

Our fit to the newest compilation of the NA49 data yields the red line with the parameters

$$a = 0.157 \text{ GeV}, b = 0.087 \text{ GeV}^{-1},$$

$$c = 0.092 \text{ GeV}^{-3}$$
, $d = 1.477 \text{ GeV}$,

$$e = 0.343 \text{ GeV}^{-1}$$



V.B., Vovchenko, Gorenstein, PRC (2016)

• The new fit gives T=157 MeV at $\mu_B=0$, which is very close to the latest findings at the LHC.

The independent analysis of **p+Nb** and **Ar+KCI** reactions by **HADES** Collaboration (arxiv:1512.07070) shows that temperatures reached in **p+A** and **A+A** reactions of different size nuclei **follow the same** $T(\mu_B)$ **line** as for **A+A**.

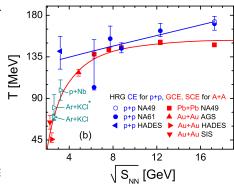
Temperature in A+A (GCE) and p+p (CE)

The **p+p** data are fitted in the **CE** HRG model.

- The temperature in p+p is gradually increasing with collisions energy from $T_{p+p} \simeq 130$ MeV to $T_{p+p} \simeq 170$ MeV.
- The temperatures reached by different systems in the beam energy scan at the SPS might be very similar

The sudden drop of the temperature at **20A** GeV is correlated with the increase of the radius R_{p+p} and the γ_s (see extra slides).

 Larger error bars for the p+p NA61/SHINE are due to smaller number of measured particles compared to NA49 (5 vs 18)

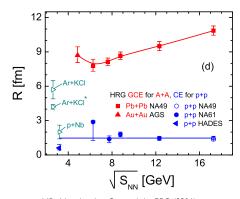


V.B., Vovchenko, Gorenstein, PRC (2016)

- The analysis of the p+p NA49 shows that the minimal set of fitted multiplicities should include particles possessing all three conserved charges, B, S, Q, for both p+p and A+A. For example, an appropriate set may include \(\pi^\pm\), \(K^\pm\), \(\rho\), and \(\bar{\rho}\).
- Therefore, the additional measurements of p
 at the lowest SPS and p mean
 multiplicities in both p+p and intermediate A+A reactions at all SPS energies are
 necessary.

Radius of the system in A+A (GCE) and p+p (CE)

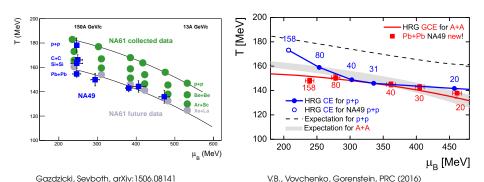
- The HRG fit of the latest A+A NA49 data gives growing radius of the system.
- The previous HRG fit of the old NA49 data gave the opposite: constant radius and growing temperature.
- The system radius in p+p $R_{\rm p+p} \simeq 1.62$ fm is approximately independent of the collisions energy and corresponds to the volume $V_{\rm p+p} \simeq 17.8 \ fm^3$.
- The radius allows to distinguish intermediate size reactions better than temperature.



V.B., Vovchenko, Gorenstein, PRC (2016)

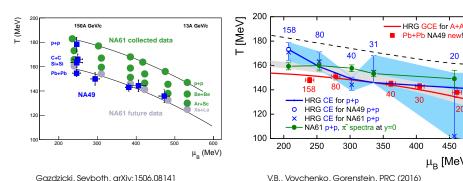
Excluded volume corrections can significantly **reduce all densities** (V.B., Gazdzicki, Gorenstein PRC (2013)) and **change the positions** of the characteristic points like **maximum** of the **net-baryon density**, the **meson/baryon domination transition** point, etc. However, their introduction requires additional assumptions (and new model parameters) about sizes of various hadrons, which are presently rather poorly constrained (see extra slides and the **talk** by **Vovchenko**).

The Surprise



- The available range of parameters is squeezed and shifted compared to expectations
- The **p+p** line touches the **A+A** line in the vicinity of the K^+/π^+ horn.

The Surprise



- The best fit of the p+p cross the A+A line in the vicinity of the K^+/π^+ horn
- There is a very little flow in p+p at SPS (π^- temperature in p+p from arXiv:1310.2417)
- The **error bars** are too **large** to make final conclusions **more data** are **needed**

450

 μ_{R} [MeV]

Conclusions

- The freeze-out temperature is larger in p+p than in A+A, $I_{p+p} > I_{A+A}$
- The temperature in p+p slowly grows with energy from 130 to 175 MeV, while the A+A temperature increases very fast from zero and saturates at $I_{A+A} \simeq 157$ MeV
- The largest difference $T_{p+p} T_{A+A} \simeq 60$ MeV is at low energies. The $T_{p+p} \simeq T_{A+A}$ at $\sqrt{s_{NN}} = 6.3 7.7$ GeV, and then the difference grows again reaching 20 MeV at the highest SPS energy
- ullet The radius \emph{R}_{A+A} increases with collision energy, while \emph{R}_{p+p} is approximately constant
- The available range of parameters in the NA61/SHINE scan is squeezed and shifted compared to expectations
- The **p+p** line **touches** the **A+A** line in the **vicinity** of the K^+/π^+ **horn**.
- More data are needed. The minimal set should include particles possessing all three conserved charges B, S, Q, for both p+p and A+A. For example, π[±], K[±], p, p̄

Extra Slides

Excluded volume effects. Density.

$$V - \sum_i v_i \cdot N_i$$

Particle volume
$$v_i = 4 \cdot \frac{4}{3} \pi \, r_i^3$$

Density

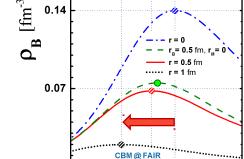
$$\mathbf{n_i} = \frac{\mathbf{n_i^{id}}(\mathbf{T}, \widetilde{\mu_i})}{1 + \sum_i \mathbf{v_i} \mathbf{n_i^{id}}(\mathbf{T}, \widetilde{\mu_i})}$$

Chemical potential

$$\widetilde{\mu_i} = \mu_i - v_i p$$

Pressure

$$p = \sum_i p_i^{id}(T,\widetilde{\mu_i})$$



10

Introduced in

Gorenstein, Petrov, Zinovjev, PLB 1981; Rischke, Gorenstein, Stocker, Greiner, ZPC 1991

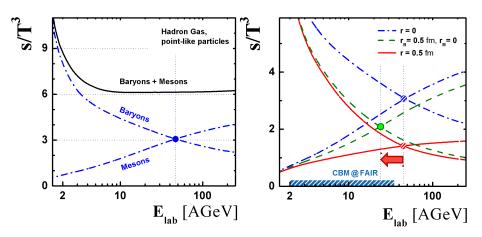
E_{lab} [AGeV]

100

Implemented in THERMUS: Wheaton, Cleymans, Comput. Phys. 2009 [hep-ph/0407174]

V.B., Gazdzicki, Gorenstein, PRC (2013)

Excluded volume effects. Entropy.



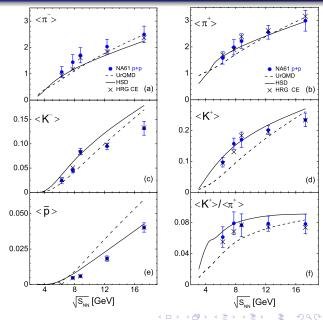
The transition point of baryon/meson domination moves to lower energies only for different meson and baryon radiuses

V.B., Gazdzicki, Gorenstein, PRC (2013)

Transport models for p+p collisions

- Hadron gas fits the data
- Both UrQMD and HSD models have problems describing the data
- Properties of p+p reactions is the input in UrQMD and HSD, which should be modified

V.B., Vovchenko, Gorenstein, arXiv:1512.08025



Interacting hadron gas

The $2 \rightarrow 2$ reactions are incorporated according to the formalism of Dashen, Ma, Bernstein, and Rajaraman. The mass distribution is given by the physical phase shifts δ :

$$d_k(M) = \frac{1}{\pi} \frac{d\delta(M)}{dM}$$

One can get it for the relative radial **wave function** of a pair of scattered particles with angular momentum *I*, **interacting** with a **central potential**, which has the asymptotic

$$\psi_I(r) \propto \sin[kr - l\pi/2 + \delta]$$

where $k=|\vec{k}|$ is the length of the three-momentum, and δ is the phase shift. If we confine our system into a **sphere** of radius R, the condition

$$kR - I\pi/2 + \delta = n \cdot \pi$$
 with $n = 0, 1, 2, ...$

must be met, since $\psi_I(r)$ has to vanish at the boundary. Analogously, in a free system

$$kR - I\pi/2 = n_{\text{free}} \cdot \pi$$

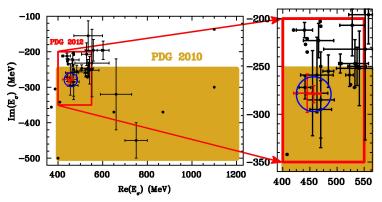
In the limit $R \to \infty$, upon subtraction,

$$\delta = (n - n_{\text{free}}) \cdot \pi$$

Differentiation with respect to **M** yields the distribution $d\delta/(\pi dM)$

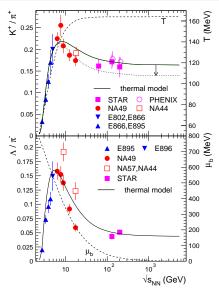
Can the data be explained by the updated sigma?

- ullet The recent PDG reviews report much lower mass and width of the $f_0(500)$ or the sigma meson
- The lower mass of the σ would result in it's **higher multiplicity**. It decays into pions, therefore it **could add** many **pions**

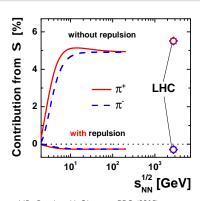


Kaminski, Acta Phys. Polon. Supp. (2015); Garcia-Martin, Kaminski, Pelaez, Ruiz de Elvira, Phys. Rev. Lett. (2011)

Cancellation of the sigma meson in thermal models



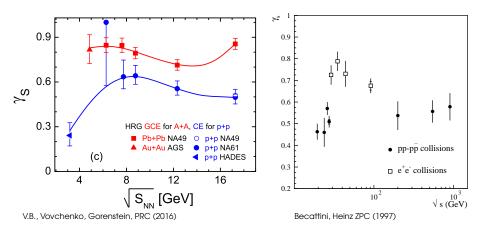
Andronic, Braun-Munzinger, Stachel, PLB (2009)



V.B., Broniowski, Giacosa, PRC (2015)

- The contribution from σ cancels in all isospin-averaged observables
- The K/π horn can not be explained by the σ
- All ratios to pions, and therefore the extracted temperatures are affected.

Strangeness saturation factor in A+A (GCE) and p+p (CE)



- The **unexpected** finding is the **decrease** of γ_5 parameter with collision energy in p+p collisions in the SPS energy region.
- However, it agrees with the known γ_S , which was calculated starting from the energy $\sqrt{s_{NN}} = 19.4$ GeV or $E_{\rm lab} \simeq 200A$ GeV.

Canonical ensemble

For a relativistic system in equilibrium consisting of one sort of positively, N_+ , and negatively charged particles N_- , with total charge equal to $Q_{c.e.} = N_+ - N_-$. In the case of the Boltzmann ideal gas in the volume V and at temperature T the GCE and CE partition functions read:

$$\begin{split} Z_{GCE}(\textit{T},\textit{V},\mu_{Q}) \; &= \sum_{N_{+}=0}^{\infty} \sum_{N_{-}=0}^{\infty} \frac{z^{N_{+}}}{N_{+}!} \frac{z^{N_{-}}}{N_{-}!} \; e^{\mu_{Q}(N_{+}-N_{-})/T} \; = \; \exp\left(2z \cosh[\mu_{Q}/T]\right), \\ Z_{CE}(\textit{T},\textit{V},\textit{Q}) \; &= \sum_{N_{+}=0}^{\infty} \sum_{N_{-}=0}^{\infty} \frac{z^{N_{+}}}{N_{+}!} \, \frac{z^{N_{-}}}{N_{-}!} \; \delta(\textit{Q}-[\textit{N}_{+}-\textit{N}_{-}]) \; = \; \textit{I}_{Q}(2z), \end{split}$$

where z is a single particle partition function:

$$z = rac{gV}{2\pi^2} \int_0^\infty p^2 dp \ e^{-rac{\sqrt{p^2+m^2}}{T}},$$

 $m{g}$ is a degeneracy factor (number of spin states), $m{m}$ - particle mass. The average values in both the GCE and CE can be calculated as follows:

$$\langle N_{\pm} \rangle \ \equiv \ \frac{1}{Z} \sum_{N_+=0}^{\infty} \sum_{N_-=0}^{\infty} N_{\pm} \ Z_{N_+,N_-}$$

Canonical ensemble

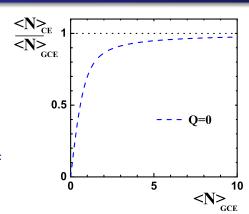
In thermodynamic limit, $V \rightarrow \infty$, and for Q = 0 one obtains:

$$\langle N_{\pm}\rangle_{GCE}=z, \qquad \langle N_{\pm}\rangle_{CE}\cong z\bigg(1-\frac{1}{4z}\bigg),$$

The canonical suppression can be compensated by the increase of temperature in CE $T_{CE} > T_{GCE}$.

For heavy ($m \gg T$) particles one has (V.B., Ferroni, Gorenstein, Gazdzicki, Becattini, JPG (2006)):

$$\frac{\langle N_{\pm}\rangle_{CE}}{\langle N_{\pm}\rangle_{GCE}} \sim \exp\left[m\left(\frac{1}{T_{GCE}} - \frac{1}{T_{CE}}\right)\right]$$



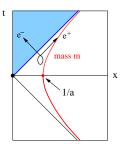
- Charge conservation strongly suppress mean multiplicities
- ullet The **thermodynamic limit** is reached very quickly at $\langle N_{\pm} \rangle \simeq 5$
- The temperature in CE can be much higher than in the GCE
- One should use the ensemble that better suits the studied system. In practice for y ≈ 0 or ⟨N⟩ ≫ 1 GCE is enough, for the values integrated over y and ⟨N⟩ ≪ 1 CE should be used.

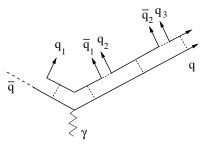
A possible mechanism of thermal production in p+p and A+A:

Hadronization due to **QCD analog** of Hawking radiation by **black holes**:

A pair creation close to a black hole:

A string breaking through pair production:





Castorina, Kharzeev, Satz, EPJ (2007)

- Due to confinement, the vacuum forms an event horizon for quarks and gluons, similar to black holes
- The information is not transmitted and the radiation is, therefore, thermal
- The **temperature** is defined by the force on the confinement surface, which is given by a **string tension** between $q\bar{q}$ pair

28 June 2016