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AFTER@LHC is a proposal for a multi-purpose fixed target 
experiment using the multi-TeV proton or heavy ion beams of 

the LHC
✔ Advance our understanding of the large-x gluon, antiquark and heavy-quark 

content in the nucleon and nucleus
● Very large PDF uncertainties for x ≳ 0.5 
● Proton charm content important to high-energy neutrino and cosmic-ray physics
● EMC effect is an open problem; studying a possible gluon EMC effect is essential
● Relevance of nuclear PDF to understand initial state of heavy-ion collisions
● Search and study of rare proton fluctuations, where one gluons carries most of the 
proton momentum

✔ Dynamics and spin of gluons inside (un)polarised nucleons
• Possible missing contribution to the proton spin: orbital angular momentum
• Test of the QCD factorisation framework
• Determination of linearly polarised gluons in unpolarised protons

✔ Heavy-ion collisions from mid- to large rapidities
• Explore the longitudinal expansion of QGP formation with hard probes
• Test the factorisation of cold nuclear effect from p+A to A+B collisions
• Test azimuthal asymmetries: hydro vs. initial-state radiation

WHAT IS AFTER@LHC AND WHAT FOR? 
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Advantages of a fixed target 
experiment at LHC
✓ Advantages of a fixed-target experiment:

• access to large Feynman |x
F
| 

• target versatility 

• possibility to polarize target
➢ spin physics program

• high luminosities with either dense targets or high 
intensity beams

➔ With LHC beams:
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✓ Testing QCD at large x = (0.3,1)

✓ Entire forward hemisphere – y
CM

 > 0 – within: 0° < θ
lab

 < O(1°) - 
large occupancy – more challenging 

✓ Backward region - y
CM

 < 0 – at large angles in the lab frame – low 
occupancy, no constrain from a beam pipe
• Backward physics fully accessible for the first time
• Access to partons with momentum fraction x 

2
 → 1 in the target 

(x
F 
 → -1)

Advantages of a fixed target 
experiment at LHC
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✓ Beam line extracted with a bent crystal
✓ Beam “split” with a bent crystal

✗ beam collimation at LHC using bent crystals is studied by the UA9 collaboration
✗ UA9 test @SPS of the crystal with proton and ion beams
✗ LUA9 (beam bending experiment at LHC using crystal)

• 2 bent crystals installed in IR7 during LS1, 2015/2016 tests with beams
✗ proton beam extraction: single or multi-pass extraction efficiency, 50%
✗ expected extracted p beam: 5 x 108 p/s (LHC beam loss: ~109 p/s)
✗ expected extracted Pb beam: 2 x 105

 
Pb/s

 Dense targets
✓ Internal gas target similar to SMOG at LHCb / inspired by HERMES at HERA

✗ can be installed in one of the existing LHC cavens or in a new one
✗ currently tested by the LHCb collaboration via a luminosity monitor (SMOG)

• proton flux: 3.4 x 1018 p/s
• Pb flux: 3.6 x 1014 Pb/s

 High Intensity beams
✓ Internal wire target

Possible fixed-target modes 
with LHC beams

Advances in High Energy Physics, 
Volume 2015 (2015), Article ID 760840
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Luminosities in pH and pA at 
115 GeV

Instantaneous luminosity:

 
Extracted beam

 l is a target thickness

Internal gas target

→ target storage cell that can be polarised 
Advances in High Energy Physics, 
Volume 2015 (2015), Article ID 463141

With pressure of 10-6 mbar - 3 times 
SMOG – one gets 100 pb-1 yr-1

 P = 10-4 mbar
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Luminosities in pH and pA at 
115 GeV

Instantaneous luminosity:

 
Extracted beam

 l is a target thickness

Internal gas target

→ target storage cell that can be polarised 
Advances in High Energy Physics, 
Volume 2015 (2015), Article ID 463141

With pressure of 10-6 mbar - 3 times 
SMOG – one gets 100 pb-1 yr-1

 Integrated luminosities with 107 s (LHC year – 9 months of running)

For 1m long H
2
 target

∫ℒ = 20 fb-1yr-1 ∫ℒ = 10 fb-1yr-1

Large luminosities comparable to LHC, 3 
orders of magnitude larger that at RHIC

Similar integrated luminosities in pA in the 
target storage cell case as with the extracted 
beam option

 P = 10-4 mbar

for P = 10-4 mbar
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Luminosities in PbH and PbA at 
72 GeV

Instantaneous luminosity:

 

 Nominal LHC collider luminosity for PbPb: 0.5 nb−1

Extracted beam

 l is a target thickness

Internal gas target

P = 10-6 mbar

 Integrated luminosities with 106 s (Pb LHC year – 1 months of running)

For 1m long H
2
 target

∫ℒ = 0.8 pb-1yr-1
∫ℒ = 0.001 pb-1yr-1

→ target storage cell that can be polarised 

For 1cm long Pb target
∫ℒ = 7 nb-1yr-1

P = 10-6 mbar
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✓ Motivated for collimation purposes

Beam extraction using bent 
crystal

✔ The LHC beam extraction with “strong crystalline filed”

✔  LUA9 test in the LHC complex

Deflecting the beam halo at 7σ distance 
to the beam

Reduce the LHC beam loss 
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Internal gas target, SMOG@LHC

LHCb-CONF-2012-034

✗ So far only noble gases
✗ No decrease of LHC performances observed in test runs
✗ Target polarization is not possible with SMOG
✗ However internal gas target can be polarized, like HERMES target

✓ Motivated for precise luminosity determination

✓ Low density noble gas injected into VELO in 
LHCb

✓ Short pNe pilot run at √s
NN

 = 87 GeV (2012)

✓ Short PbNe pilot run at √s
NN

 = 54 GeV 

(2013)

✓ He, Ne and Ar gas injected (2015)
✓ pNe, pAr run at √s

NN
 = 110 GeV (end of 

August 2015)
✓ 1.5 week of PbAr at √s

NN
 = 69 GeV (2015)
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Physics Highlights
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Physics Highlights: AFTER@LHC

➔ Physics Reports 522 (2013) 239; 
Few Body Syst. 53 (2012) 11-25.

http://after.in2p3.fr/after/index.php/Recent_p
ublished_ideas_in_favour_of_AFTER@LHC

➔ Heavy-ion physics

➔ Exclusive reactions

➔ Spin physics studies

➔ Hadron structure

➔ Feasibility study and technical 
ideas

➔ Many more ideas for a fixed target 
experiment at LHC in a Special Issue in 
Advances in High Energy Physics

Expression of Interest in preparation
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✓ Nucleon partonic structure

• Gluon pdf in the proton – large uncertainties at high x

➔ g
p
(x) = g

n
(x) ?

✔ Heavy-quark distribution at large x in the proton

✓ Spin physics

• Test of the QCD factorisation framework

• Linearly polarised gluons in unpolarised protons:  
h

1
g⊥ , “Boers-Mulder” effect

• Sivers effect

• Single Spin Asymmetry in DY and HF studies

Boer, Pisano, PRD 86 (2012) 094007

With AFTER@LHC: boost – better 
access to the low-p

T 
C-even quarkonia

See also: arXiv:1502.04021; 
arXiv:1504.03791; arXiv:1504.04332, 
arXiv:1203.5579; arXiv:1208.364

✓ W and Z production near threshold ?

Physics Highlights: AFTER@LHC
pp and pA @ √s

NN
 = 115 GeV
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✓ Gluon distribution in nucleus at large x
➔  Complementary to EIC, LheC
➔ Large uncertainty in nuclei at large x, unknown gluon EMC effect
➔ Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
➔ Search and study rare proton fluctuations where one gluon carries most of the proton momentum

 

Physics Highlights: AFTER@LHC
PbA @ √s

NN
 = 72 GeV, pA @ √s

NN
 = 115 GeV

✔  Heavy-Ion collisions from mid to large rapidities
➔ Precise estimation of Cold Nuclear Matter effect from pA and AB 
– test of the factorization

➔  In PbA, different nuclei, A-dependent studies
➔ Quark-Gluon Plasma studies in heavy-ion collisions

➔ Longitudinal expansion of QGP formation
● Quarkonia, HF jets quenching, low mass lepton pairs, direct photons

➔ Test the formation of azimuthal asymmetries: hydrodynamics vs 
initial-state radiation

✓ Ultra-peripheral collisions
Phys.Rev. D91 (2015) 9, 094014
JHEP 1509 (2015) 087 
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✓ Gluon distribution in nucleus at large x
➔  Complementary to EIC, LHeC 

Physics Highlights: AFTER@LHC
PbA @ √s

NN
 = 72 GeV, pA @ √s

NN
 = 115 GeV

✔  Heavy-Ion collisions from mid to large rapidities
➔ Precise estimation of Cold Nuclear Matter effect from pA and AB 
– test of the factorization

➔  In PbA, different nuclei, A-dependent studies

➔ Quark-Gluon Plasma studies in heavy-ion collisions

➔ Longitudinal expansion of QGP formation
● Quarkonia, HF jets quenching, low mass lepton pairs, direct photons

➔ Test the formation of azimuthal asymmetries: hydrodynamics vs 
initial-state radiation

✗ With AFTER@LHC:
● Access to target x

F
 = 0.3 - 1 (>1 Fermi motion in nucleus)

● With different targets:
➔  probing A dependence of shadowing and nuclear matter effects
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Feasibility studies 
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Charge particle multiplicities in 
a fixed target mode

✓ Charge particle multiplicities, for all possible fixed target modes, p+Pb, Pb+H, 
Pb+Pb, are smaller than the ones reached in the collider modes. A detector with the 
LHCb capabilities is able to reconstruct all event centralities up to Pb-Ar.

Advances in High Energy Physics, Volume 2015 (2015), Article ID 986348
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First simulations of quarkonia 
and Drell-Yan

✔ PYTHIA 8.185, fast simulations with LHCb-
like reconstruction parameters

✗ Requirements:
➔ momentum resolution: Δp/p = 0.5%
➔ μ identification efficiency: 98% 

✗ Single μ cuts:
➔ 2 < η

μ
 < 5

➔ Minimum p
T

μ > 0.7 GeV/c 

➔ μ misidentification (with π or K) for the 
uncorrelated background

✓ Input for quarkonium signals: 
HELAC-Onia

➔ Drell-Yan – HELAC-Onia
➔ cc, bb – HELAC-Onia
➔ Uncorrelated background – min 
bias PYTHIA 8

✓ Estimation of different 
dimuon background sources:

Advances in High Energy Physics, Volume 2015 (2015), Article ID 986348

F. Achilli et al, JINST 8 (2013) P10020 
arXiv:1306.0249

✗ Separate simulations to have under 
control p

T
 and y input distributions 

and normalization of different 
sources

✓ Outputs from HELAC-Onia were 
processed with Pythia to perform 
the hadronization, initial/final 
radiations, and resonance decays
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Drell-Yan simulations with full 
background

p+Pb 115 GeV
∫L = 100 pb-1, with 1cm Pb target

➔ No nuclear effects assumed 
➔ At backward rapidities quark-induced processes are favoured → background gets 
smaller
➔ Charm and beauty background can be reduced (secondary vertex cut) – interesting 
by its own
➔ High Drell-Yan yields for both pp and pPb – combinatorial background can be 
subtracted using the event-mixing technique
➔ Precise measurements of A

N
DY at high x  
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Drell-Yan simulations with full 
background – signal / background

p+Pb 115 GeV

➔ At backward rapidities quark-induced processes are favoured → background gets smaller

➔ Different rapidity ranges, single μ p
T
 > 1.2 GeV/c

✗  QCD background: ccbar + bbbar background
✗  MB background: uncorrelated background
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Drell-Yan simulations with full 
background – signal / background

p+Pb 115 GeV➔ Backward rapidity: 2 < y < 3 
➔ Different single μ p

T
 cuts

✗  QCD background: ccbar + bbbar background
✗  MB background: uncorrelated background

➔ Raising single μ p
T
 cut from default 0.7 GeV/c improves signal / background
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Drell-Yan simulations with full 
background - RpPb

p+Pb 115 GeV
➔ Statistical precision on R

pPb
 vs di-μ invariant mass – x

F
 in different rapidity ranges

➔ Combinatorial background uncertainties taken into account assuming  like-sign background 
subtraction
➔ No nuclear effects assumed  

➔ Precise measurements of R
pPb

DY  up to high x
F 
 - nPDF constraints  

∫Lpp = 10 fb-1

∫LpPb = 100 pb-1



AFTER@LHC SQM 201623

Quarkonium acceptance and pT reach

➔  J/ψ and ψ(2S) signals can be studies up to 
~ 15 GeV/c, (nS) up to ~ 10 GeV/c 
➔ All quarkonium states can be measured 
down to 0 GeV/c
➔ Similar p

T
 reach expected for pA 

➔ Study is limited to the rapidity range 
of 2 < y < 5 (2 < η

μ
 < 5)

➔   J/ψ and ψ(2S) signals can be studies 
in the whole range,  lowest y for (nS) 
is ~  2.5-3

∫L = 10 fb-1, 0.5 year of data taking with 1m H2 target (in the crystal case)

p+p 115 GeV

➔ single μ p
T
 cut > 0.7 GeV/c
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Upsilon simulations with full background 

Pb+Pb 72 GeV

➔ Rapidity reach: 3 < y < 5
➔ Combinatorial background uncertainties assuming  like-sign background reconstruction
➔ No nuclear effects assumed  

➔ Good separation of different Upsilon states
➔ Better signal/background for more forward rapidities (y

cms
 ~ 0)

∫LPbPb= 7 nb-1
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Impact of nPDF effects on 
quarkonium RpPb 

pp: ∫L = 10 fb-1, pPb: ∫L = 100 pb-1 Very good statistical 
precision !

Simulations done using JIN with EPS09

J/ψ

See also: Advances in High Energy Physics, Article ID 492302 and 783134 
arXiv:1507.05413; arXiv:1504.07428

➔ Combination of measurements of (nS), J/ψ and ψ(2S)  for -3 < y
CMS

 < 0 will allow 

to pin down the existence of a possible gluon EMC and antishadowing effect

CHARM

p+Pb 115 GeV

➔ Statistical uncertainties from the signal yield only

Advances in High Energy Physics, Volume 2015 (2015), Article ID 986348
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Open Heavy Flavour in Heavy Ion 
collisions

What is the source of the energy 
loss of heavy quarks? D0 → K- 

Pb+Pb 72 GeV

 0-10% centrality

y
cms = 0

y
cms = -2.5

Advances in High Energy Physics, Volume 
2015 (2015), Article ID 783134

RAA vs y and pT → insight into charm Eloss

Collisional vs. radiative energy loss

➔ Statistical uncertainties from the signal yield only

Energy loss based on:
J. Aichelin, P. B. Gossiaux, 
and T. Gousse Journal of 
Physics:
Conference Series, vol. 455, 
no. 1, Article ID 012046, 
2013.
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Summary

➔ Many physics opportunities with a fixed target experiment using 
LHC p and Pb beams

➔ Novel testing ground for QCD in the high-x frontier with 
AFTER@LHC 

➔ Extensive heavy-ion program
➔ With either dense targets or high intensity beams, very high 

luminosities can be achieved
➔ Target versatility: hydrogen, deuteron, nucleus – nuclear effects and 

QGP
➔ First fast simulations performed
➔ Many ideas in favour of AFTER@LHC published
➔ Expression of Interest in preparation
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Summary

➔ Many physics opportunities with a fixed target experiment using 
LHC p and Pb beams

➔ Novel testing ground for QCD in the high-x frontier with 
AFTER@LHC 

➔ Extensive heavy-ion program
➔ With either dense targets or high intensity beams, very high 

luminosities can be achieved
➔ Target versatility: hydrogen, deuteron, nucleus – nuclear effects and 

QGP
➔ First fast simulations performed
➔ Many ideas in favour of AFTER@LHC published
➔ Expression of Interest in preparation after.in2p3.fr

Thank you !
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BACKUP
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Ideas in favour of 
AFTER@LHC
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Future Reading
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Future Reading
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Future Reading
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Future Reading
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http://www.hindawi.com/journals/ahep/si/354953/
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
p 
= 5 ×108 p+ s−1 (1)

= 0.7 g cm-3 (Liq H
2
)

ℒ = 2000 b-1s-1

Nominal luminosities in pH

Instantaneous luminosity:

 
Extracted beam

 l is a target thickness

Internal gas target


p 
 = 3.5 × 1018 p+ s−1 (2)


 
= A×P/(2.24×106) mbar-1 g cm-3  (3)

for P = 10-4 mbar (4)

ℒ = 1000 b-1s-1    

With pressure of 10-6 mbar – 3 times 
SMOG – one gets 100 pb-1 yr-1

 Integrated luminosities with 107 s (LHC year – 9 months of running)

For 1m long H
2
 target

∫ℒ = 20 fb-1yr-1 ∫ℒ = 10 fb-1yr-1

(1) ½ of the beam loss
(2) 3.2 ×1014 p+ s−1 × 11kHz
(3)1 mole of a perfect gas occupies 22 400 cm at 273 K and 1 bar
(4)Barschel et.al; Advances in High Energy Physics, Volume 2015 (2015), Article ID 463141

→ target storage cell that can be polarised 

l = 100 cm

Advances in High Energy Physics, 
Volume 2015 (2015), Article ID 463141
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
p 
=5 ×108 p+ s−1 (1)

= 0.7 g cm-3 (Liq H
2
)

ℒ = 0.8 b-1s-1

Nominal luminosities in PbH

Instantaneous luminosity:

 
Extracted beam

 l is a target thickness

Internal gas target


p 
 = 4.6 × 1014 Pb s−1 (2)


 
= A×P/(2.24×106) mbar-1 g cm-3  (3)

for P = 10-6 mbar (4)

ℒ = 10-3 b-1s-1    

 Integrated luminosities with 106 s (Pb LHC year – 1 months of running)

For 1m long H
2
 target

∫ℒ = 0.8 pb-1yr-1 ∫ℒ = 0.001 pb-1yr-1

(1) ½ of the beam loss
(2) 4.2 ×1010 Pb s−1 × 11kHz
(3) 1 mole of a perfect gas occupies 22 400 cm at 273 K and 1 bar
(4) 3 times SMOG luminosity

→ target storage cell that can be polarised 

l = 100 cm
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Beam extraction using bent 
crystal

✔ The LHC beam extraction with “strong crystalline filed”

✔  LUA9 test in the LHC complex

Deflecting the beam halo at 7σ distance 
to the beam

Reduce the LHC beam loss 

✓ Motivated for collimation purposes

CERN-SPSC-2015-039 / SPSC-SR-173
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J/ψ signal simulation with full 
background

J/ψ→ μ+ μ-

➔ p
T 
and rapidity Distributions for the J/ψ and different backgrounds differ. 

➔ In more backward or forward rapidity regions, the signal to background 
ratio increases

∫L = 10 fb-1, 0.5 year of data taking with 1m H2 target (in the crystal case)
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Open Heavy Flavour in pA collisions

➔ Heavy quarks in pA

D. Kikoła

Cronin effect ?
Collective effects ( radial flow)? 

„Possible evidence for radial flow of 
heavy mesons in d+Au collisions” Phys. 
Lett. B731 51-56 (2014)

d+Au 200 GeV

p+A 115 GeV

AFTER → definitive answer

D0 → K- 
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