

Measurement of Bottom contribution to the non-photonic electron production in p+p collisions at STAR

Wei Li

Shanghai Institute of Applied Physics for the STAR Collaboration

Outline

Motivation

- Analysis method for extracting Non-Photonic Electron(NPE)
- > NPE-hadron azimuthal correlation in p+p collisions
 - at $\sqrt{s} = 200 \text{ GeV}$ and 500 GeV

> Summary

Motivation

> Heavy quarks are mainly produced in the INITIAL hard partonic interactions - calculable in pQCD
> QCD predicts that heavy quarks lose less energy than light quarks via gluon radiation
> NPE: semi-leptonic decays of open heavy flavor hadrons
Branching ratio: c → e + anything (9.6%) b→ e + anything (11%)
> NPE is good proxy of heavy flavor quarks
2 charged hadron - d+Au FTPC-Au 0-20%

►NPE is suppressed at high p_T in central Au+Au collisions, which implies substantial energy loss of heavy quarks.

Separate bottom contribution to NPE

Theoretical calculation predicts less radiative energy loss for bottom quarks compared to charm quarks, which can be studied through suppression of Dand B-decayed NPE separately in Au+Au w.r.t p+p collisions

Contributions of D- and B-decayed NPE in p+p collisions can be determined through studying NPE-hadron azimuthal correlation: different charm and bottom decay kinematics

- Extracting D- and B-decayed NPE contributions in p+p collisions at 200 GeV as a reference for studies in Au+Au collisions at 200 GeV
- Extracting D- and B-decayed NPE contributions in p+p collisions at 500 GeV to examine the collision energy dependence and compare with pQCD predictions

STAR Detector

Detector used:

- Time Projection Chamber (TPC)
- Barrel Electro-Magnetic

Calorimeter (BEMC)

Barrel Shower Maximum

Detector (BSMD)

Time Of Flight

Vertex Position Detector

Data Sample:

Run11 p+p collisions at $\sqrt{s} = 500 \text{ GeV}$ Run12 p+p collisions at $\sqrt{s} = 200 \text{ GeV}$

Signal: non-photonic electron Charm decay Bottom decay Background:
photonic electronPhoton conversion π^0 Dalitz decay η Dalitz decayHadron contamination

Electron trigger threshold (electron E_T): run11 500GeV: HT0~2.6 GeV, HT1~4.3 GeV, HT2~6.0 GeV

run12 200GeV: HT0~2.6 GeV, HT2~4.3 GeV

Purity of Inclusive Electron

Primary electron $n\sigma_e$, 6.5 < P_t < 7.5 GeV/c Counts **10**⁵ - TPC only Run11 pp500 HT1 TPC + BEMC + BSMD **10**⁴ 10³ 10² 10 10⁻¹ -2 -8 -6 2 0 **n** σ_{e}

$$n\sigma_{e} = \frac{1}{R}\log \frac{dE/dx}{< dE/dx >_{e}}$$

- R is the resolution of energy loss measurement by TPC
- dE/dx is the measured energy loss for a track
- <dE/dx>_e is the expected energy loss for electrons from Bichsel formula at a given momentum

Purity

Run11:above 99% for $2.5 < p_T < 4.5 \text{ GeV/c}$
above 96% for $4.5 < p_T < 8.5 \text{ GeV/c}$; above 86% for $8.5 < p_T < 10.5 \text{ GeV/c}$ Run12:above 90% for $p_T < 7 \text{ GeV/c}$; above 80% for $p_T < 10 \text{ GeV/c}$

Photonic Background

> The invariant mass for a pair of photonic electrons is small.

- > Choose invariant mass $< 0.1 \text{ GeV/c}^2$ to remove photonic background.
- > Reconstructed photonic electron= Opposite sign Same sign.
- Photonic electron = Reconstructed photonic electron/ε. ε is the reconstruction efficiency for photonic electrons calculated using simulations.

Method to Extract NPE-h Correlations

Signal: NPE= Semi-inclusive +SameSign-(1/eff-1)*reco-photonic-Hadron_contamination

 $\succ \Delta \phi_{\text{Non-Pho}} = \Delta \phi_{\text{Semi_Inc}} + \Delta \phi_{\text{SameSign}} - \Delta \phi_{\text{Not_Reco_Pho}} - \Delta \phi_{\text{hadron}}$

NPE-h correlation in 200 GeV p+p Collisions

- Prominent correlation signals on both near-side and away-side
- PYTHIA 8.1 combined with STAR-HF-Tune Version 1.1 to generate e(D)-h and e(B)-h correlation in 200 GeV p+p collisions
- Significant difference on the near-side of correlation distributions between D and B decays due to different decay kinematics

B->NPE Contribution in 200 GeV p+p Collisions

NPE-h correlation in 500 GeV p+p Collisions

- Raw correlation w/o efficiency correction
- > Associated hadron with $p_T > 0.3 \text{ GeV/c}$
- > Clear azimuthal correlation on the near-side, and the correlation signal increases as NPE p_T increases.

PYTHIA Simulation for 500 GeV p+p Collisions

We use PYTHIA 8.1 combined with STAR-HF-Tune Version 1.1 to generate e(D)-h and e(B)-h correlation in 500 GeV p+p collision

Summary

- ▶ Bottom contribution to NPE is extracted using NPE-h correlations in p+p collisions at $\sqrt{s} = 200$ GeV.
- The 200 GeV p+p results have an extented p_T range and reduced systematic uncertainties than previous measurements. They also confirm theory calculations.
- Clear NPE-h correlation on near side can be seen in 500 GeV p+p collisions, and the correlation signal increases as trigger p_T increases. Efficiency corrections and systematics under the way.
- The HFT allows direct access to B contributions to NPE in Au+Au collisions via topological reconstruction of decay vertex.

Thank you for your attention!

BACKUP

Electron Identification: P/E

> P is the momentum measured by TPC, E is the sum of the associated BEMC points' energy measured by BEMC.

> Electrons will deposit almost all of their energies in the BEMC towers.

> 0.3 < P/E < 2.0 cuts were used to keep electrons and reject hadrons.

Electron Identification: Shower Size

SMD hits of hadrons

SMD hits of electrons

>Number of SMD hits per shower indicates shower size.

- > Electrons have larger number of BSMD hits than hadrons.
- > We choose SMD hits larger than 2 to reject hadron contamination

Electron Identification: Projection Distance

>Projection distance: distance between the TPC track projection position on BSMD η and ϕ planes and the reconstructed BEMC point position

> Histograms for hadrons are scaled to match the entries of electrons

 $>-3\sigma < Z$ Dist pos(neg) $< 3\sigma$ and $-3\sigma <$ Phi Dist $< 3\sigma$ cuts were used to remove random associations between TPC tracks and BEMC points.