Heavy and light flavor jet quenching

Guang-You Qin

Central China Normal University (CCNU)

@

Strangeness in Quark Matter 2016

UC Berkeley, CA, USA

June 27-July 1, 2016

Outline

 A Linearized Boltzmann Transport (LBT) approach to heavy/light flavor jet quenching (with elastic & inelastic contributions)

• Full jet energy loss and modification (collisional, radiative, broadening)

 Use jet-like angular de-correlation to probe mediuminduced broadening (q^{hat})

Jet quenching

 The study of jet quenching/modification can provide valuable information about hot and dense QGP produced in heavy-ion collisions

In the limit of soft scatterings, the effect of elastic collisions can be described by FP equation (longitudinal drag, longitudinal diffusion & transverse diffusion)

$$\frac{\partial f}{\partial z^{-}} = \left[D_{L1} \frac{\partial}{\partial I_{q}^{-}} + \frac{1}{2} D_{L2} \frac{\partial^{2}}{\partial^{2} I_{q}^{-}} + \frac{1}{2} D_{T2} \nabla_{\vec{I}_{q\perp}}^{2} \right] f(z^{-}, I_{q}^{-}, \vec{I}_{q\perp})$$

The medium-induced gluon radiation spectrum from higher-twist formalism:

$$\frac{dN_g}{dxdl_{\perp}^2 dz^-} \approx \frac{4\alpha_s}{\pi} P(x) \frac{D_{T,2}}{l_{\perp}^4} \sin^2 \left(\frac{z^- - z_i^-}{2\tau_f^-}\right)$$

GYQ, Majumder, PRC 2013 Guo, Wang, PRL, 2000 Majumder, PRD, 2012

Jet transport coefficients control both collisional and radiative contributions

Radiative & collisional contributions

GYQ, Ruppert, Gale, Jeon, Moore, Mustafa, PRL 2008; Cao, GYQ, Bass, PRC 2013

A Linearized Boltzmann Transport (LBT) approach for heavy & light flavor jet quenching

• Boltzmann equation: $p_1 \cdot \partial f_1(x_1, p_1) = E_1 C[f_1]$

 $\Gamma_{12\to34} = \frac{\gamma_2}{2E_1} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \int \frac{d^3 p_3}{(2\pi)^3 2E_3} \int \frac{d^3 p_4}{(2\pi)^3 2E_4}$ **Elastic collisions:** $\times f_2(\vec{p}_2) \left[1 \pm f_3(\vec{p}_1 - \vec{k}) \right] \left[1 \pm f_4(\vec{p}_2 + \vec{k}) \right] S_2(s, t, u)$ $\times (2\pi)^4 \delta^{(4)}(p_1 + p_2 - p_3 - p_4) |\mathcal{M}_{12 \to 34}|^2$ $P_{\rm ol} = \Gamma \Delta t$ $\langle N_g \rangle (E, T, t, \Delta t) = \Delta t \int dx dk_\perp^2 \frac{dN_g}{dx dk_\perp^2 dt}$ **Inelastic collisions:** ۲ $P(n) = \frac{\langle N_g \rangle^n}{m!} e^{-\langle N_g \rangle}$ $P_{\rm inel} = 1 - e^{-\langle N_g \rangle}$ $P_{\text{tot}} = P_{\text{el}}(1 - P_{\text{inel}}) + P_{\text{inel}}$ **Elastic + Inelastic:** ۲

Cao, Luo, GYQ, Wang, arXiv:1605.06447 & in preparation

Elastic & inelastic energy loss from LBT

Cao, Luo, GYQ, Wang, arXiv:1605.06447 & in preparation

Quenching hierarchy

Cao, Luo, GYQ, Wang, arXiv:1605.06447 & in preparation

R_{AA} from LBT (heavy & light flavor hadrons)

Full jet evolution in medium

Not only the interaction of the leading hard parton with the medium constituents, but also the fate of radiated shower partons

$$E_{jet} = E_{in} + E_{lost}$$

= E_{in} + E_{out}(radiation) + E_{out}(broadening) + E_{th}(collision)

GYQ, Muller, PRL, 2011; Casalderrey-Solana, Milhano, Wiedemann, JPG 2011; Young, Schenke, Jeon, Gale, PRC, 2011; Dai, Vitev, Zhang, PRL 2013; Wang, Zhu, PRL 2013; Blaizot, Iancu, Mehtar-Tani, PRL 2013; etc.

Full jet evolution in medium

- Solve the 3D (energy & transverse momentum) evolution for shower partons inside the full jet
- Include both collisional (the longitudinal drag and transverse diffusion) and all radiative/splitting processes

$$\begin{split} \frac{d}{dt}f_{j}(\omega_{j},k_{j\perp}^{2},t) &= \left(\hat{e}_{j}\frac{\partial}{\partial\omega_{j}} + \frac{1}{4}\hat{q}_{j}\nabla_{k_{\perp}}^{2}\right)f_{j}(\omega_{j},k_{j\perp}^{2},t) \quad \text{Drag \& diffusion} \\ &+ \sum_{i}\int d\omega_{i}dk_{i\perp}^{2}\frac{d\tilde{\Gamma}_{i\rightarrow j}(\omega_{j},k_{j\perp}^{2}|\omega_{i},k_{i\perp}^{2})}{d\omega_{j}d^{2}k_{j\perp}dt}f_{i}(\omega_{i},k_{i\perp}^{2},t) \quad \text{Gain terms} \\ &- \sum_{i}\int d\omega_{i}dk_{i\perp}^{2}\frac{d\tilde{\Gamma}_{j\rightarrow i}(\omega_{i},k_{i\perp}^{2}|\omega_{j},k_{j\perp}^{2})}{d\omega_{i}d^{2}k_{i\perp}dt}f_{j}(\omega_{j},k_{j\perp}^{2},t) \quad \text{Loss terms} \\ &\quad E_{jet}(R) = \sum_{i}\int_{R}\omega_{i}f_{i}(\omega_{i},k_{i\perp}^{2})d\omega_{i}dk_{i\perp}^{2} \end{split}$$

Ningbo Chang, GYQ, arXiv:1603.01920

Full jet energy loss (radiative, collisional, broadening)

Ningbo Chang, GYQ, arXiv:1603.01920

Nuclear modification of jet shape

The soft outer part of jets is easier to be modified (some absorbed by medium), while the modification of the inner hard cone is more difficult The enhancement at large r is consistent with the broadening The final modification of jet shape comes from the interplay of different contributions

Ningbo Chang, GYQ, arXiv:1603.01920

Various full jet observables

Ningbo Chang, GYQ, arXiv:1603.01920

Jet-like correlations

Jet-like correlations

Most of (theoretical) studies on jet-like correlations in AA collisions mainly focus on the nuclear modification of the (per-trigger) yield We will use the angular correlations to probe the transverse momentum broadening

Dijet angular correlations in pp & AA

Resum all order soft gluon radiation **in vacuum** at NLL for dijet anglar correlation by *Sun, Yuan, Yuan, PRL 2014; PRD 2015*

Extend the formalism to include the broadening effect induced by **the QCD medium** for dijet anglar correlation by *Mueller, Wu, Xiao, Yuan, arXiv:1604.04250*

Probing q^{hat} via dihadron & hadron-jet angular correlations

Lin Chen, GYQ, Shu-Yi Wei, Bo-Wen Xiao, Han-Zhong Zhang, in preparation

Momentum imbalance q_T distribution (in pp)

Lin Chen, GYQ, Shu-Yi Wei, Bo-Wen Xiao, Han-Zhong Zhang, in preparation

Summary

- *Radiative* & *collisional* processes play different roles in different probes and observables
 - Light & heavy flavor jet quenching, full jet energy loss, nuclear modification of jet shape
- Jet transport coefficients control both *collisional* and *radiative* contributions
- Probe medium-induced broadening (q^{hat}) via jet-like angular correlations

backup

Test for collisional & radiative energy loss from LBT

Cao, Luo, GYQ, Wang, arXiv:1605.06447 & in preparation

Sensitivity to jet transport parameter

Ningbo Chang, GYQ, arXiv:1603.01920

Full jet energy loss (jet size dependence of different contributions)

Uncertainty from $\omega_{\rm cut}$

Nuclear modification of jet shape

Ningbo Chang, GYQ, arXiv:1603.01920

Extraction of jet transport parameter

Jet transport coefficients control both collisional and radiative contributions

GYQ, Ruppert, Gale, Jeon, Moore, Mustafa, PRL 2008 HT-BW: Chen, Hirano, Wang, Wang,

Zhang, PRC 2011 HT-M:

McGill-AMY:

Majumder, Chun, PRL 2012 **GLV-CUJET:**

Xu, Buzzatti, Gyulassy, arXiv: 1402.2956

MARTINI-AMY:

Schenke, Gale, Jeon, PRC 2009

NLO SYM:

Zhang, Hou, Ren, JHEP 2013

Dihadron correlation

$$\frac{d\sigma}{d\Delta\phi} = \sum_{a,b,c,d} \int p_T^{h_1} dp_T^{h_1} \int p_T^{h_2} dp_T^{h_2} \int \frac{dz_c}{z_c^2} \int \frac{dz_d}{z_d^2}$$
$$\times \int b \ db \ J_0(q_\perp b) e^{-S(Q,b)} x_a f_a(x_a,\mu_b) x_b f_b(x_b,\mu_b)$$
$$\times \frac{1}{\pi} \frac{d\sigma_{ab \to cd}}{d\hat{t}} D_c(z_c,\mu_b) D_d(z_d,\mu_b)$$

$$S(Q,b) = S_{\rm p}^{i}(Q,b) + S_{\rm p}^{f}(Q,b) + S_{\rm np}(Q,b) + \frac{b^2}{4} \left(\langle \hat{q}_c L \rangle + \langle \hat{q}_d L \rangle \right),$$