ONSET OF MESONIC CONDENSATION PHENOMENA FROM HIGHER ORDER SUSCEPTIBILITIES

Vladimir Skokov (RBRC BNL)

Swagato Mukherjee and V.S. work in progress

Higher order cumulants of conserved charge fluctuations

 are sensitive probes.
Proper measurement is challenging.

BES II provides unique opportunity to learn about $T-\mu_{B}$ phase-diagram, but. . .

Extending to 3d dimension

- What happens at non-zero μ_{Q}, μ_{I} or μ_{S} ?
- Naively $\mu_{Q} \neq 0$ can be studied with isobars \& BES:
fixed $A=96, Z=40,44$. Baryon stopping and charge transfer?!
- Complimentary approach: we can probe those regions with fluctuations.
- $\mu_{I} \neq 0$ can be studied on lattice owing to absence of sign problem

Punchline

Thermodynamic partition function is meromorphic function of T and μ.

This allows to study otherwise unaccessible region of phase diagram: analytical continuation.

In theory, we can probe high charge and high strange chemical potential, including Bose-Einstein condensation of pions and kaons by studying fluctuation at zero n_{Q} and n_{s}.

In practice, we can measure in experiment/compute on lattice finite number of cumulants; this limits precision of analysis. Need for refined methods to extract information.

Radius of convergence

- Lets consider even function

$$
f(z)=\sum_{k} c_{2 k} z^{2 k} \quad \text { with } \quad c_{2 k}=\frac{1}{(2 k)!} \frac{\partial^{2 k} f}{\partial z^{2 k}}
$$

- Closest singularity $\left(z_{c}\right)$ to expansion point $(z=0)$ defines radius of convergence R of series
- Definition of ratio and root test:
$R=\lim _{k \rightarrow \infty} \inf R_{2 k}, \quad R_{2 k}=\left|\frac{c_{2 k-2}}{c_{2 k}}\right|^{1 / 2}$

$$
\text { or } R_{k}=\left|\frac{1}{c_{2 k}}\right|^{1 /(2}
$$

- According to Darboux theorem (1878):
late terms in the development of a function as a Taylor series are determined by the behaviour of the function in the vicinity of singular points on the circle of convergence In other words: one can determine not only location by type of singularity (critical exponent).

Radius of convergence: RELATION TO cUMULANTS

- Pressure can be expanded to

$$
p / T^{4}=\sum_{k} \frac{\chi_{k}}{k!} \cdot\left(\frac{\mu-\mu_{0}}{T}\right)^{k}
$$

where χ_{k} is k-th order cumulant computed at μ_{0} / T.

- Phase transitions are singularities in (complex) μ plane.
- Radius of convergence defines location of closest singularity.
- Cumulants are related to fluctuations of corresponding charge, i.e.

$$
\chi_{4}=\frac{\left\langle(\delta N)^{4}\right\rangle-3\left\langle(\delta N)^{2}\right\rangle^{2}}{V T^{3}}
$$

Ratio test for radius of convergence is particularly convenient because $V T^{3}$ cancels

Singularities in QCD at finite T and μ

Singularities on the complex plane are related to

- critical point of second-order phase transition. Singularity lies on real μ axis.
- crossover transition. Singularity is at some complex μ.

See P. C. Hemmer and E. H. Hauge, Phys. Rev. 133, A1010 (1964); C. Itzykson, R. B. Pearson and J. B. Zuber, Nucl. Phys. B 220, 415 (1983); M. A. Stephanov, Phys. Rev. D 73, 094508 (2006).

- spinodal lines for first-order phase transition. Singularities are either at real or complex values of μ. Some model calculations: essential singularity.

See M. A. Stephanov, Phys. Rev. D 73, 094508 (2006);

- "thermal singularities" associated with zeros of inverse Fermi-Dirac function. In QCD, owing to $\mathrm{Z}(3)$ symmetry the singularities are located at quark chemical potential $\operatorname{Im} \mu_{q}= \pm(\pi T+2 \pi n k T) / 3$.

Free pions: radius of convergence

Free pions

Pressure:

$$
\frac{p_{\pi^{+}}+p_{\pi^{-}}}{T^{4}}=\frac{m_{\pi}^{2}}{\pi^{2} T^{2}} \sum_{l=1}^{\infty} K_{2}\left(l m_{\pi} / T\right) \cosh \left(l \mu_{Q} / T\right)
$$

Cumulants at zero μ_{Q} :

$$
\chi_{n}^{Q}=\frac{m_{\pi}^{2}}{\pi^{2} T^{2}} \sum_{l=1}^{\infty} l^{n-2} K_{2}\left(l m_{\pi} / T\right)
$$

The coefficients of expansion

$$
c_{n}=\frac{\chi_{n}^{Q}}{n!}
$$

Hadron resonance gas: radius of convergence

Hadron Resonance Gas
 n -th cumulant is given by

$$
\chi_{n}^{Q}=\sum_{i \in \text { hadrons }} \chi_{n i}^{Q} ; \quad \chi_{i n}^{Q}=\frac{\left(2 s_{i}-1\right) m_{i}^{2} Q_{i}^{n}}{\pi^{2} T^{2}} \sum_{l=1}^{\infty}(\pm 1)^{n-1} l^{n-2} K_{2}\left(l m_{i} / T\right)
$$

upper/lower sign corresponds to bosons/fermions

CONCLUSION FROM THIS EXERCISE

- at moderate n-significant contribution from doubly charge baryons (see e.g. P. Braun-Munzinger, B. Friman, F. Karsch, K. Redlich and V.S.,Nucl. Phys. A 880, 48 (2012)

To describe location of BEC transition, higher order cumulants are required Can we improve our methods?

Non-PERTURBATIVE CHIRAL MATRIX MODEL

- Only in free theory BE condensation occurs at vacuum pion mass.
- Functional Renormalization Group approach to take into account fluctuations (Intro: previous talk by Gergely)
- Pion mass dependence on μ_{Q} for different T :

- Details of model:
R. Pisarski and V.S. 1604.00022
- Details of FRG solution:
V.S., B. Friman, K. Redlich 1108.3231
- Increase of pion mass with T and μ_{Q}

Non-PERTURBATIVE CHIRAL MATRIX MODEL

- The phase diagram in $T-\mu_{Q}$ plane:

- Details of model:
R. Pisarski and V.S. 1604.00022
- Details of FRG solution:
V.S., B. Friman, K. Redlich 1108.3231
- Non-trivial dependence of T_{BEC} on μ_{Q}.
- Can it be reproduced with cumulant analysis? What order is required?!
- At low T transition is at about $\mu_{Q}=140 \mathrm{MeV}$ as expected.

Non-PERTURBATIVE CHIRAL MATRIX MODEL

Green dots: exact results we want to reproduce. $R=m_{\pi}(T) / T$

Non-PERTURBATIVE CHIRAL MATRIX MODEL

Hopeless?!

Way to improve convergence

Conformal mapping

Conformal mapping is transformation $\xi=\xi(z)$ that preserves local angles. The main idea is to extend radius of convergence and to enhance sensitivity to properties of critical point by non-linear transformation of original series. E.g. using conformal mapping one can move physical singularities closer to expansion point, while keeping non-physical singularities as far away as possible.

Thermal singularity

In terms of quark chemical potential:

$$
\operatorname{Im} \mu_{q}= \pm(\pi T+2 \pi n T) / 3, \quad n \in \mathbb{Z}
$$

Thus closest singularities are located at

$$
\operatorname{Im} \mu_{Q}= \pm \pi T \text { (related to } \mathrm{d} \text { - quark or single charged baryons) }
$$

and

$$
\operatorname{Im} \mu_{Q}= \pm \pi T / 2 \text { (related to } \mathrm{u}-\text { quark or doubly charged baryons) }
$$

Mapping to fugacity plane

Thermal singularity

Fugacity

$$
\lambda=\exp \mu_{Q} / T
$$

- maps thermal singularities $i \pi T$ to negative real axis on fugacity plane
- maps thermal singularities $i \pi T / 2$ to imaginary axis on fugacity plane

Mapping to fugacity plane

- Conjugate singularities interfere with method precision
- Mapping to fugacity plane, $\lambda=\exp \left(\frac{\mu}{T}\right) \sim \mu / T=\ln (\lambda)$
- To simplify notation $\tilde{\lambda}=\lambda-1$

$$
\begin{aligned}
& \sum_{n=0}^{n=10} \frac{1}{n!} \chi_{n}\left(\frac{\mu}{T}\right)^{n}= \\
& \chi_{0}+\frac{\tilde{\lambda}^{2} \chi_{2}}{2}-\frac{\tilde{\lambda}^{3} \chi_{2}}{2}+\tilde{\lambda}^{4}\left(\frac{11 \chi_{2}}{24}+\frac{\chi_{4}}{24}\right)+\tilde{\lambda}^{5}\left(-\frac{5 \chi_{2}}{12}-\frac{\chi_{4}}{12}\right) \\
& +\tilde{\lambda}^{6}\left(\frac{137 \chi_{2}}{360}+\frac{17 \chi_{4}}{144}+\frac{\chi_{6}}{720}\right)+\tilde{\lambda}^{7}\left(-\frac{7 \chi_{c}}{20}-\frac{7 \chi_{4}}{48}-\frac{\chi_{6}}{240}\right) \\
& +\tilde{\lambda}^{8}\left(\frac{363 \chi_{2}}{1120}+\frac{967 \chi_{4}}{5760}+\frac{23 \chi_{6}}{2880}+\frac{\chi_{8}}{40320}\right)+\tilde{\lambda}^{9}\left(-\frac{761 \chi_{2}}{2520}-\frac{89 \chi_{4}}{480}-\frac{\chi_{6}}{80}-\frac{\chi_{8}}{10080}\right) \\
& +\tilde{\lambda}^{10}\left(\frac{7129 \chi_{2}}{25200}+\frac{4523 \chi_{4}}{22680}+\frac{3013 \chi_{6}}{172800}+\frac{29 \chi_{8}}{120960}+\frac{\chi_{10}}{3628800}\right)+O\left(\tilde{\lambda}^{11}\right)
\end{aligned}
$$

Darboux theorem I

Suppose that singularity z_{c} of $f(z)\left(=\sum_{n} f_{n} z^{n}\right)$ is closest to origin, and that behaviour in its neighborhood is given by

$$
f(z)=\left(1-z / z_{c}\right)^{-v} r(z)+a(z)
$$

with $r(z)=\sum_{k} b_{k}\left(z-z_{c}\right)^{k}$ and $a(z)$ being analytic in some circle with center at $z=0$ and radius $>\left|z_{c}\right|$. Asymptotic expansion of $f(z)$

$$
f_{n} \sim \sum_{k=0}^{\infty} \frac{(-1)^{k} b_{k} z_{c}^{k-n} \Gamma(n+v-k)}{n!\Gamma(v-k)}
$$

To reduce corrections construct difference

$$
f_{n} z_{c}-\frac{n+v-1}{n} f_{n-1} \sim \sum_{k=1}^{\infty} \frac{(-1)^{k+1} k b_{k} z_{c}{ }^{k-n} \Gamma(n+v-k-1)}{n!\Gamma(v-k)} \sim O\left(n^{\nu-3}\right)
$$

Consequently $z_{c}=\frac{f_{n-1}}{f_{n}}\left(1+\frac{v-1}{n}\right)$, leading term gives ratio method.

Darboux theorem II

Combine adjacent f_{n} to construct more accurate approximation.
This is better done by constructing recursive relation

$$
\begin{aligned}
X_{n}^{0}\left(z_{c}, v\right) & =f_{n} ; \\
X_{n}^{m+1}\left(z_{c}, v\right) & =z_{c} X_{n}^{m}\left(z_{c}, v\right)-(n+v-2 m-1) X_{n-1}^{m}\left(z_{c}, v\right) / n .
\end{aligned}
$$

Easy to show that

$$
X_{n}^{m} \sim O\left(n^{\nu-2 m-1}\right)
$$

Two unknowns z_{c} and v can be found by solving two equations

$$
X_{n}^{m}\left(z_{c}, v\right)=0, \quad X_{n-1}^{m}\left(z_{c}, v\right)=0
$$

For simplicity $m=1$ and we use fugacity mapping.

Applying Darboux theorem

Applying Darboux theorem

Applying Darboux theorem

Method based on Darboux theorem:

Ratio test:

Reminder: 7-th order in fugacity includes only 6-th and lower order cumulants:

$$
\tilde{\lambda}^{7}\left(-\frac{7 \chi_{2}}{20}-\frac{7 \chi_{4}}{48}-\frac{\chi_{6}}{240}\right)
$$

Applying Darboux theorem

Applying Darboux theorem

Method based on Darboux theorem:
Ratio test:

Superior reconstruction of phase boundary

Conclusions and Outlook

Conclusions

- Cumulant analysis may eventually allow us to reconstruct 3D phase diagram
- In this talk, we explored μ_{Q} as 3-d axis. Commonly applied ratios test requires very high order cumulants and very ineffective
- Using conformal mapping to remove spurious singularities and Darboux theorem for properties of late coefficients, with reasonable number of cumulants $n=6$ we were able to reconstruct onset of BEC.

Outlook. Things I did not have time to show

- It is sufficient to have only positive/negative pion fluctuations.
- Using similar approach it is possible to probe kaon condensation using strangeness fluctuations or kaon fluctuations.

Signatures of phase Transition and critical point

- Static:

- $\mathrm{O}(4)$ crossover: universal sign structure of higher order cumulants, χ_{6}
- Divergent cumulants of baryon number fluctuations at CP

$$
\chi_{n} \propto \xi^{3\left(\frac{n \beta \gamma}{2-\alpha}-1\right)}
$$

- In vicinity of CP: universal sign structure of cumulants.
- Divergent baryon number susceptibility at
off-equilibrium first order phase transition
- Divergent baryon number susceptibility at
off-equilibrium first order phase transition

B. Friman, F. Karsch, K. Redlich, V. S. 2011
M. Stephanov 2011
C. Sasaki, K. Redlich, B. Friman 2007

Fluctuations as a probe of phase diagram

Last slide: predictions for an infinite static medium. In HIC:

- Finite lifetime (S. Mukherjee, R. Venugopalan, Y. Yin 2015/2016)
- Finite size and anisotropy (G. Almasi and V.S. work in progress)
- Conservation laws (A. Bzdak, V. Koch, V.S. 2011)
- Fluctuations not related to interesting physics (V.S., B. Friman, K. Redlich 2012)

S. Mukherjee, R. Venugopalan, Y. Yin 2015

