ONSET OF MESONIC CONDENSATION PHENOMENA FROM HIGHER ORDER SUSCEPTIBILITIES

Vladimir Skokov (RBRC BNL)

Swagato Mukherjee and V.S. work in progress
Higher order cumulants of conserved charge fluctuations are sensitive probes.

Proper measurement is challenging.
BES II provides unique opportunity to learn about $T - \mu_B$ phase-diagram, but...
What happens at non-zero μ_Q, μ_I or μ_S?

Naively $\mu_Q \neq 0$ can be studied with isobars & BES: fixed $A = 96$, $Z = 40, 44$. Baryon stopping and charge transfer?!

Complimentary approach: we can probe those regions with fluctuations.

$\mu_I \neq 0$ can be studied on lattice owing to absence of sign problem
Thermodynamic partition function is meromorphic function of T and μ. This allows to study otherwise **unaccessible** region of phase diagram: analytical continuation.

In theory, we can probe high charge and high strange chemical potential, including Bose-Einstein condensation of pions and kaons by studying fluctuation at zero n_Q and n_S.

In practice, we can measure in experiment/compute on lattice **finite** number of cumulants; this limits precision of analysis. Need for refined methods to extract information.
Radius of convergence

- Let's consider even function

\[f(z) = \sum_k c_{2k} z^{2k} \quad \text{with} \quad c_{2k} = \frac{1}{(2k)!} \frac{\partial^{2k} f}{\partial z^{2k}} \]

- Closest singularity \((z_c)\) to expansion point \((z = 0)\) defines radius of convergence \(R\) of series

- Definition of ratio and root test:

\[
R = \lim_{k \to \infty} \inf R_{2k}, \quad R_{2k} = \left| \frac{c_{2k-2}}{c_{2k}} \right|^{1/2} \quad \text{or} \quad R_k = \left| \frac{1}{c_{2k}} \right|^{1/(2k)}
\]

- According to Darboux theorem (1878):

 late terms in the development of a function as a Taylor series are determined by the behaviour of the function in the vicinity of singular points on the circle of convergence

 In other words: one can determine not only location by type of singularity (critical exponent).
Radius of convergence: relation to cumulants

- Pressure can be expanded to

\[\frac{p}{T^4} = \sum_k \frac{\chi_k}{k!} \cdot \left(\frac{\mu - \mu_0}{T} \right)^k \]

where \(\chi_k \) is \(k \)-th order cumulant computed at \(\mu_0/T \).

- Phase transitions are singularities in (complex) \(\mu \) plane.

- Radius of convergence defines location of closest singularity.

- Cumulants are related to fluctuations of corresponding charge, i.e.

\[\chi_4 = \frac{\langle (\delta N)^4 \rangle - 3\langle (\delta N)^2 \rangle^2}{VT^3} \]

Ratio test for radius of convergence is particularly convenient because \(VT^3 \) cancels
Singularities in QCD at finite T and μ

Singularities on the complex plane are related to

- **Critical point of second-order phase transition.** Singularity lies on real μ axis.

- **Crossover transition.** Singularity is at some complex μ.

- **Spinodal lines for first-order phase transition.** Singularities are either at real or complex values of μ. Some model calculations: essential singularity.

 See M. A. Stephanov, Phys. Rev. D 73, 094508 (2006);

- **“Thermal singularities”** associated with zeros of inverse Fermi-Dirac function. In QCD, owing to $Z(3)$ symmetry the singularities are located at quark chemical potential $\text{Im } \mu_q = \pm (\pi T + 2\pi n k T)/3$.

Free pions: radius of convergence

Free pions

Pressure:

\[\frac{p_{\pi^+} + p_{\pi^-}}{T^4} = \frac{m_{\pi}^2}{\pi^2 T^2} \sum_{l=1}^{\infty} K_2(lm_{\pi}/T) \cosh(l\mu_Q/T) \]

Cumulants at zero \(\mu_Q \):

\[\chi_n^Q = \frac{m_{\pi}^2}{\pi^2 T^2} \sum_{l=1}^{\infty} l^{n-2} K_2(lm_{\pi}/T) \]

The coefficients of expansion

\[c_n = \frac{\chi_n^Q}{n!} \]
Hadron Resonance Gas: Radius of Convergence

Hadron Resonance Gas

n-th cumulant is given by

\[
\chi_n^Q = \sum_{i \in \text{hadrons}} \chi_{ni}^Q, \quad \chi_{in}^Q = \frac{(2s_i - 1)m_i^2Q_i^n}{\pi^2T^2} \sum_{l=1}^{\infty} (\pm)^{n-1} l^{n-2} K_2(lm_i/T)
\]

upper/lower sign corresponds to bosons/fermions
Conclusion from this exercise

To describe location of BEC transition, higher order cumulants are required. Can we improve our methods?

- **at moderate n** - significant contribution from doubly charge baryons (see e.g. P. Braun-Munzinger, B. Friman, F. Karsch, K. Redlich and V.S., Nucl. Phys. A 880, 48 (2012)
NON-PERTURBATIVE CHIRAL MATRIX MODEL

- Only in free theory BE condensation occurs at vacuum pion mass.
- Functional Renormalization Group approach to take into account fluctuations (Intro: previous talk by Gergely)
- Pion mass dependence on μ_Q for different T:

![Graph showing pion mass dependence on μ_Q for different T.]

- Increase of pion mass with T and μ_Q

Details of model:
R. Pisarski and V.S. 1604.00022

Details of FRG solution:
V.S., B. Friman, K. Redlich 1108.3231
The phase diagram in $T - \mu_Q$ plane:

- Details of model: R. Pisarski and V.S. 1604.00022
- Details of FRG solution: V.S., B. Friman, K. Redlich 1108.3231

- Non-trivial dependence of T_{BEC} on μ_Q.
- Can it be reproduced with cumulant analysis? What order is required?!

- At low T transition is at about $\mu_Q = 140$ MeV as expected.
Green dots: exact results we want to reproduce. \(R = \frac{m_\pi(T)}{T} \)
Non-perturbative chiral matrix model

\[R_n \sim \frac{T}{T_c} \]

\(n = 6 \)

VSokov@bnl.gov

Onset of BEC

SQM 2016 15 / 31
Non-perturbative chiral matrix model

\[\frac{T}{T_c} = 0.4, 0.5, 0.6, 0.7, 0.8 \]

\[R_n = \text{data points} \]

\[n = 8 \]

VSokov@bnl.gov

Onset of BEC

SQM 2016 16/31
Hopeless?!
WAY TO IMPROVE CONVERGENCE

CONFORMAL MAPPING

Conformal mapping is transformation $\xi = \xi(z)$ that preserves local angles. The main idea is to extend radius of convergence and to enhance sensitivity to properties of critical point by non-linear transformation of original series. E.g. using conformal mapping one can move physical singularities closer to expansion point, while keeping non-physical singularities as far away as possible.

THERMAL SINGULARITY

In terms of quark chemical potential:

$$\text{Im } \mu_q = \pm(\pi T + 2\pi nT)/3, \quad n \in \mathbb{Z}$$

Thus closest singularities are located at

$$\text{Im } \mu_Q = \pm \pi T \quad \text{(related to } d \text{ – quark or single charged baryons)}$$

and

$$\text{Im } \mu_Q = \pm \pi T/2 \quad \text{(related to } u \text{ – quark or doubly charged baryons)}$$
Mapping to fugacity plane

Thermal singularity

Fugacity

\[\lambda = \exp \mu Q / T \]

- maps thermal singularities \(i\pi T \) to negative real axis on fugacity plane
- maps thermal singularities \(i\pi T / 2 \) to imaginary axis on fugacity plane

\[\mu \quad \mu_c \quad -\mu_c \quad -i\pi T \]

\[\lambda \quad 1 / \lambda_c \quad \lambda_c \]
Mapping to fugacity plane

Conjugate singularities interfere with method precision

Mapping to fugacity plane, \(\lambda = \exp\left(\frac{\mu}{T}\right) \sim \mu/T = \ln(\lambda) \)

To simplify notation \(\tilde{\lambda} = \lambda - 1 \)

\[
\sum_{n=0}^{n=10} \frac{1}{n!} \chi_n \left(\frac{\mu}{T}\right)^n = \\
\chi_0 + \frac{\tilde{\lambda}^2 \chi_2}{2} - \frac{\tilde{\lambda}^3 \chi_2}{2} + \tilde{\lambda}^4 \left(\frac{11 \chi_2}{24} + \frac{\chi_4}{24}\right) + \tilde{\lambda}^5 \left(-\frac{5 \chi_2}{12} - \frac{\chi_4}{12}\right) \\
+ \tilde{\lambda}^6 \left(\frac{137 \chi_2}{360} + \frac{17 \chi_4}{144} + \frac{\chi_6}{720}\right) + \tilde{\lambda}^7 \left(-\frac{7 \chi_2}{20} - \frac{7 \chi_4}{48} - \frac{\chi_6}{240}\right) \\
+ \tilde{\lambda}^8 \left(\frac{363 \chi_2}{1120} + \frac{967 \chi_4}{5760} + \frac{23 \chi_6}{2880} + \frac{\chi_8}{40320}\right) + \tilde{\lambda}^9 \left(-\frac{761 \chi_2}{2520} - \frac{89 \chi_4}{480} - \frac{\chi_6}{80} - \frac{\chi_8}{10080}\right) \\
+ \tilde{\lambda}^{10} \left(\frac{7129 \chi_2}{25200} + \frac{4523 \chi_4}{22680} + \frac{3013 \chi_6}{172800} + \frac{29 \chi_8}{120960} + \frac{\chi_{10}}{3628800}\right) + O(\tilde{\lambda}^{11})
\]
Suppose that singularity z_c of $f(z) (= \sum_n f_n z^n)$ is closest to origin, and that behaviour in its neighborhood is given by

$$f(z) = (1 - z/z_c)^{-\nu} r(z) + a(z)$$

with $r(z) = \sum_k b_k (z - z_c)^k$ and $a(z)$ being analytic in some circle with center at $z = 0$ and radius $> |z_c|$. Asymptotic expansion of $f(z)$

$$f_n \sim \sum_{k=0}^{\infty} \frac{(-1)^k b_k z_c^{k-n} \Gamma(n + \nu - k)}{n! \Gamma(\nu - k)}$$

To reduce corrections construct difference

$$f_n z_c - \frac{n + \nu - 1}{n} f_{n-1} \sim \sum_{k=1}^{\infty} \frac{(-1)^{k+1} kb_k z_c^{k-n} \Gamma(n + \nu - k - 1)}{n! \Gamma(\nu - k)} \sim O(n^{\nu-3})$$

Consequently $z_c = \frac{f_{n-1}}{f_n} \left(1 + \frac{\nu - 1}{n} \right)$, leading term gives ratio method.
Combine adjacent f_n to construct more accurate approximation. This is better done by constructing recursive relation

$$
X_0^n(z_c, \nu) = f_n;
$$

$$
X_{n+1}^m(z_c, \nu) = z_c X_n^m(z_c, \nu) - (n + \nu - 2m - 1)X_{n-1}^m(z_c, \nu)/n.
$$

Easy to show that

$$
X_n^m \sim O(n^{\nu-2m-1})
$$

Two unknowns z_c and ν can be found by solving two equations

$$
X_n^m(z_c, \nu) = 0, \quad X_{n-1}^m(z_c, \nu) = 0
$$

For simplicity $m = 1$ and we use fugacity mapping.
Applying Darboux theorem

$\frac{T}{T_c}$

R_n

$n = 6$

Onset of BEC SQM 2016 24/31

VSkokov@bnl.gov
Applying Darboux theorem
Applying Darboux theorem

Method based on Darboux theorem:

Ratio test:

Reminder: 7-th order in fugacity includes only 6-th and lower order cumulants:

\[
\tilde{\lambda}^7 \left(-\frac{7\chi_2}{20} - \frac{7\chi_4}{48} - \frac{\chi_6}{240} \right)
\]
Applying Darboux theorem
Applying Darboux theorem

Method based on Darboux theorem:

Ratio test:

Superior reconstruction of phase boundary
CONCLUSIONS

- Cumulant analysis may eventually allow us to reconstruct 3D phase diagram.
- In this talk, we explored μ_Q as 3-d axis. Commonly applied ratios test requires very high order cumulants and very ineffective.
- Using conformal mapping to remove spurious singularities and Darboux theorem for properties of late coefficients, with reasonable number of cumulants $n = 6$ we were able to reconstruct onset of BEC.

OUTLOOK. THINGS I DID NOT HAVE TIME TO SHOW

- It is sufficient to have only positive/negative pion fluctuations.
- Using similar approach it is possible to probe kaon condensation using strangeness fluctuations or kaon fluctuations.
Signatures of phase transition and critical point

Static:
- O(4) crossover: universal sign structure of higher order cumulants, χ_6
- Divergent cumulants of baryon number fluctuations at CP
 $$\chi_n \propto \xi^3 \left(\frac{\beta \gamma}{2 - \alpha} - 1 \right)$$
- In vicinity of CP: universal sign structure of cumulants.
- Divergent baryon number susceptibility at off-equilibrium first order phase transition

B. Friman, F. Karsch, K. Redlich, V. S. 2011
M. Stephanov 2011
C. Sasaki, K. Redlich, B. Friman 2007
FLUCTUATIONS AS A PROBE OF PHASE DIAGRAM

Last slide: predictions for an infinite static medium.

In HIC:

- Finite lifetime (S. Mukherjee, R. Venugopalan, Y. Yin 2015/2016)
- Finite size and anisotropy (G. Almasi and V.S. work in progress)
- Conservation laws (A. Bzdak, V. Koch, V.S. 2011)
- Fluctuations not related to interesting physics (V.S., B. Friman, K. Redlich 2012)

\[p \text{ is a fraction of measured baryons} \]

\[\mu = 0 \quad R_{n,m} = \frac{\chi_n}{\chi_m} \]

Modification due to finite life-time:

S. Mukherjee, R. Venugopalan, Y. Yin 2015