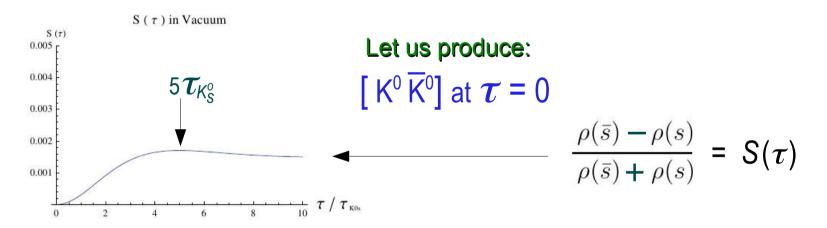


MOTIVATION: **E(ssd) excess**

- There still is the unexplained puzzle of the strongly enhanced Ξ^- yield at the HADES SQM2013: Jour. of Phys. Conf. Ser. 509 (2014) 012002 SPS STAR \$ Pb+Pb \$ 10-1 10 AND MAA p+Nb AGS 10 (₀3 + ν) .Ξ 10-2 10 $\Xi^{-}/(\Lambda + \Sigma^{0})$ Ar+KCl HADES 10-2 10 Thermus 2.3 HADES Statistical GiBUU model 10-3 10 **UrQMD** 10 10-3 -1 -0.5 0 0.5 excess > 20x10 $(\sqrt{s_{NN}} - \sqrt{s_{thr}})$ [GeV] [GeV] SNN - VS 10² 1 10 10 10 10 √s_{NN} [GeV] [GeV] subthreshold production of (\overline{ssd}) means: not enough energy for [$\underline{ss}+\underline{ss}$] Production of (SS) pair requires (\overline{SS}) creation
 - 2 kaons with 2x497MeV = 1GeV of Mass $*c^2$
 - Models + MC generators underestimate DATA
- Strangeness conservation means [ss] = 2x K for every [ss] pair.

2x Kaons created for $1x \equiv$

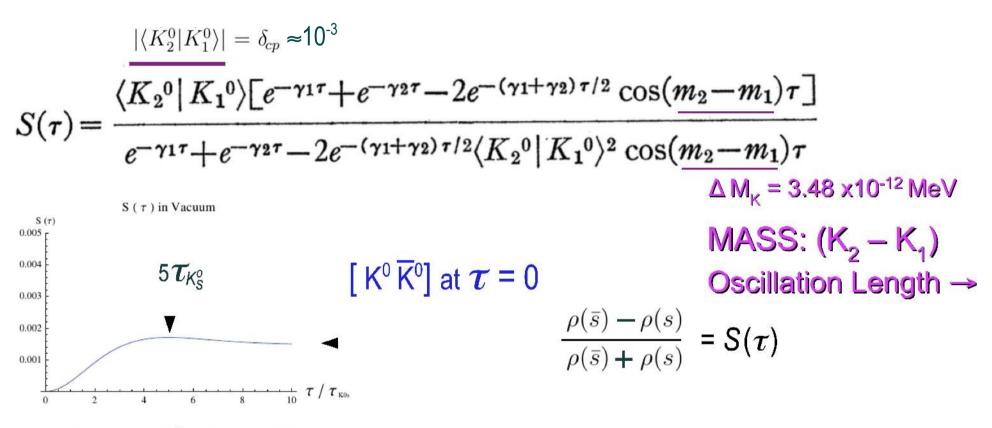
MOTIVATION: E(ssd) excess


- There still is the unexplained puzzle of the strongly enhanced Ξ^- yield at the HADES SQM2013: Jour. of Phys. Conf. Ser. 509 (2014) 012002 SPS STAR \$ Pb+Pb \$ 10-1 10 AND MAA p+Nb AGS 10-2 Ξ_/(Λ+Σ⁰) $E^{-}/(\Lambda + \Sigma^{0})$ Ar+KCl HADES 10-2 Thermus 10 HADES GiBUU 10-3 10 **UrQMD** 10 10-3 -1 -0.5 0 0.5 excess ≈ 20x 10 $(\sqrt{s_{NN}} - \sqrt{s_{thr}})$ [GeV] [GeV] SNN - VS. 10² 1 10 10 10 10 √s_{NN} [GeV] [GeV] subthreshold production of (\overline{ssd}) means: not enough energy for [$\overline{ss+ss}$] oscillation $(d\overline{s}) K^0 \rightarrow \rightarrow (s\overline{d}) \overline{K}^0$ **(**0 K⁺ $\label{eq:sdu} (\underset{(\text{sdd})}{\text{sdd}}) \stackrel{\Lambda^0}{\underset{\sum}{\overset{\forall}{\longrightarrow}}} \stackrel{\text{1x}\,\Xi\, + \,\text{Pion}}{\underset{\sum}{\overset{(\text{sdd})}{\longrightarrow}}} \rightarrow \Xi^- + \pi$ Produce only 1x ss $1x \equiv$ and 2x Kaon
- Strangeness non-conservation ($K^0 \xrightarrow{oscillation} \overline{K}^0$) process in medium ?

Is strangeness conserved ?

Physical Review D2 (1970) 540, in Eq.(7) CPT symmetry assumed

$$|\langle K_2^0|K_1^0
angle|=\delta_{cp}lpha$$
10⁻³


$$S(\tau) = \frac{\langle K_{2^{0}} | K_{1^{0}} \rangle [e^{-\gamma_{1}\tau} + e^{-\gamma_{2}\tau} - 2e^{-(\gamma_{1}+\gamma_{2})\tau/2} \cos(m_{2}-m_{1})\tau]}{e^{-\gamma_{1}\tau} + e^{-\gamma_{2}\tau} - 2e^{-(\gamma_{1}+\gamma_{2})\tau/2} \langle K_{2^{0}} | K_{1^{0}} \rangle^{2} \cos(m_{2}-m_{1})\tau}$$

- Small = 10⁻³ effect in Vacuum
- Takes long time $\tau = 5\tau_{K_s^0} >> 10$ fm/c $K_L \sim (1 + \epsilon_L) K^0 (1 \epsilon_L) \bar{K^0}$
- Asymptotic value 1.5x10⁻³ due to K_{1}^{0} containing more $K^{0}(d\overline{S})$ than $\overline{K}^{0}(s\overline{d})$

when CP is violated: net-strangeness $\rho(\overline{s}) - \rho(s)$ is not conserved

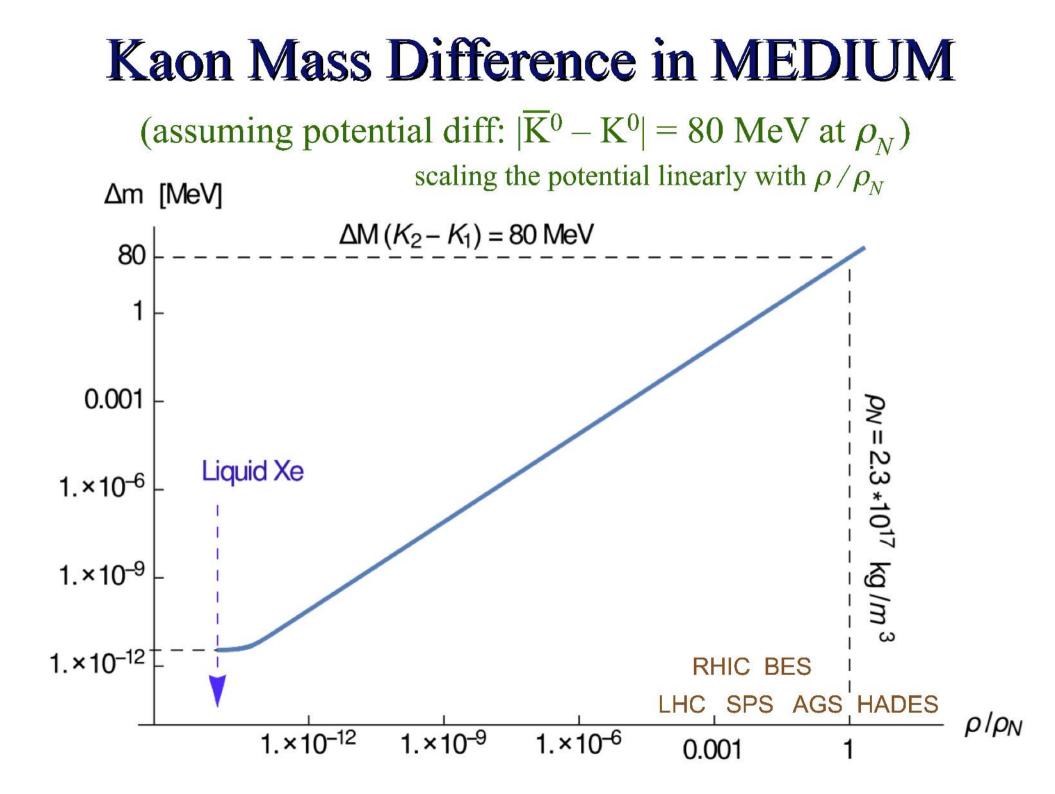
Is strangeness conserved ?

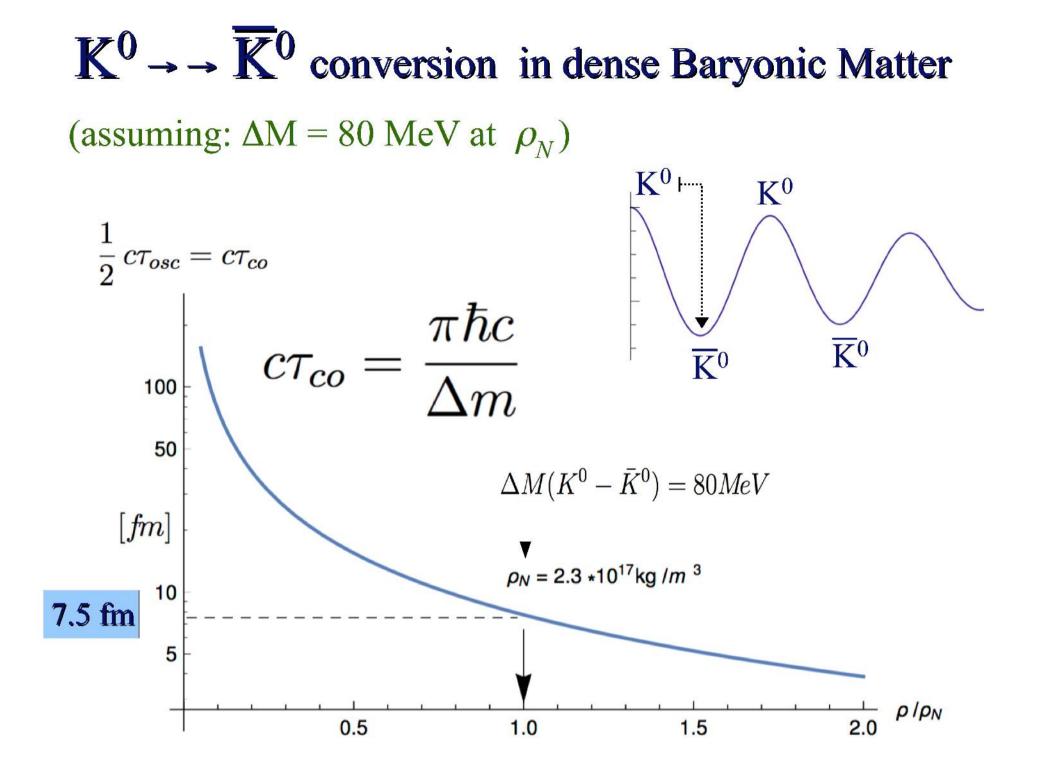
- Small = 10⁻³ effect in Vacuum
- Takes long time $\tau = 5\tau_{K_s^0} >> 10 \text{fm/c}$

$$K_L \sim (1+\epsilon_L) K^0 - (1-\epsilon_L) ar{K^0}$$

• Asymptotic value 1.5×10^{-3} due to K_{L}^{0} containing more $K^{0}(d\overline{S})$ than $\overline{K}^{0}(s\overline{d})$

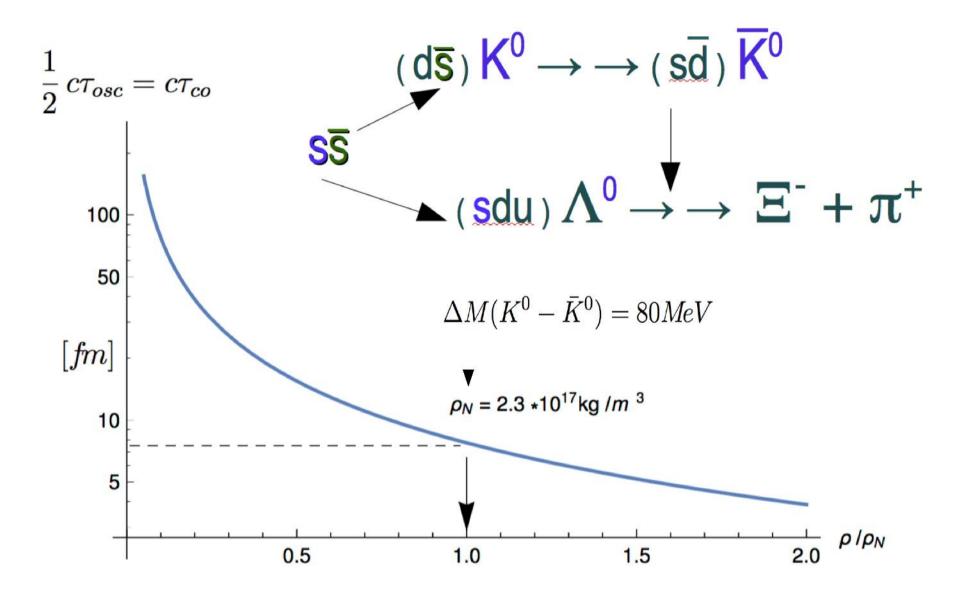
when CP is violated: net-strangeness $\rho(\overline{s})-\rho(s)$ is not conserved.


OSCILLATION LENGTHs in VACUUM


Table 1: Oscillation parameters of neutral K^0, D^0, B^0 , and B_s^0 mesons in vacuum.

	K^0		B^0	B_s^0	
$\Delta m [{ m MeV}]$	$3.5 imes 10^{-12}$	$\approx 6.3\!\times\!10^{-12}$	$3.3\!\times\!10^{-10}$	$11.7\!\times\!10^{-9}$	
$\Delta m \left[\frac{10^{10}\hbar}{s} \right]$	0.529 ± 0.001	0.95 ± 0.44	51.0 ± 0.3	1776 ± 2	
$\tau_0 \ [10^{-12} s]$	89.5^{*}	0.401	1.52	1.51	
$\tau_{osc} \left[10^{-12} \mathrm{s} \right]$	1187	≈ 660	12.3	0.35	
$ au_{osc}/ au_0$	13.1^{*}	≈ 1650	8.2	0.23	
$c \cdot au_0$	$2.7^{*}\mathrm{cm}$	$0.123\mathrm{mm}$	$0.45\mathrm{mm}$	$0.45\mathrm{mm}$	
$c \cdot au_{osc}$	$35\mathrm{cm}$	$\approx 20\mathrm{cm}$	$3.7\mathrm{mm}$	$0.11\mathrm{mm}$	

$$\cos(\Delta m \tau)$$


$$c\tau_{osc} = 2\pi\hbar c/\Delta m$$
 = 15 fm
197 MeVfm 80MeV } in Nuclei

$\mathbb{K}^0 \rightarrow \overline{\mathbb{K}}^0$ conversion in Baryonic Matter

can be fast enough for $\Xi(ssd)$ to be created from $1x (s\overline{s})$ pair.

Optimistic Observation: 1) K⁰ oscillation is modified in medium (Δm_K) at $\rho = \rho_N$ (dense baryonic matter) $\tau_o \approx 10$ fm/c \Rightarrow conversion (ds) \rightarrow (ds) may be possible within very short time during hadronic phase of HIC

2) It might be related to Ξ(ssd) excess
observed by HADES in Ar+KCl, p+Nb DATA
+ other anomalies in Kaon production at AGS, SPS, GSI

Calculation of $K^0 \rightarrow \overline{K}^0$ in Medium

$$\mathbb{H}' = \begin{bmatrix} \tilde{M}_{11} & M_{12} \\ M_{21} & \tilde{M}_{22} \end{bmatrix} - \frac{i}{2} \begin{pmatrix} \tilde{\Gamma}_{11} & \Gamma_{12} \\ \Gamma_{21} & \tilde{\Gamma}_{22} \end{pmatrix}$$

assuming CPT symmetry violation

$$\begin{split} \tilde{M}_{11} &= M_{11} + V_{K^0}(\rho_B) , & \tilde{M}_{22} = M_{22} - \bar{V}_{\bar{K}^0}(\rho_B) \\ \tilde{\Gamma}_{11} &= \Gamma_{11} + \gamma_{K^0}(\rho_B) , & \tilde{\Gamma}_{22} = \Gamma_{22} + \bar{\gamma}_{\bar{K}^0}(\rho_B) \\ & \text{absorption } \mathbf{K}^0 & \text{absorption } \overline{\mathbf{K}}^0 \end{split}$$

$$\mathbb{M}_{K^{0}} = \begin{bmatrix} +20 \text{ MeV} \\ 497.7 + V_{K^{0}}(\rho_{B}) & e^{i\xi_{M}} 1.74 \cdot 10^{-12} \\ e^{-i\xi_{M}} 1.74 \cdot 10^{-12} & 497.7 - \bar{V}_{\bar{K}^{0}}(\rho_{B}) \end{bmatrix}$$

60 - 80 MeV at ρ_N

Calculation of $K^0 \rightarrow \overline{K}^0$ in Medium

assuming CPT symmetry violation

$$|\langle \tilde{K}_{2}^{0} | \tilde{K}_{1}^{0} \rangle| = \delta_{cp} \implies |\langle P_{H} | P_{L} \rangle|^{2} = \frac{(1 + \delta_{cp}^{2})|1 - \theta^{2}| - (1 - \delta_{cp}^{2})(1 - |\theta|^{2})}{(1 + \delta_{cp}^{2})|1 - \theta^{2}| + (1 - \delta_{cp}^{2})(1 + |\theta|^{2})}$$

 $rac{\Delta\mu}{2H_{12}}$

$$|P_L
angle=p_L|P^0
angle-q_L|ar{P}^0
angle \quad rac{q_L}{p_L}=(1- heta)$$

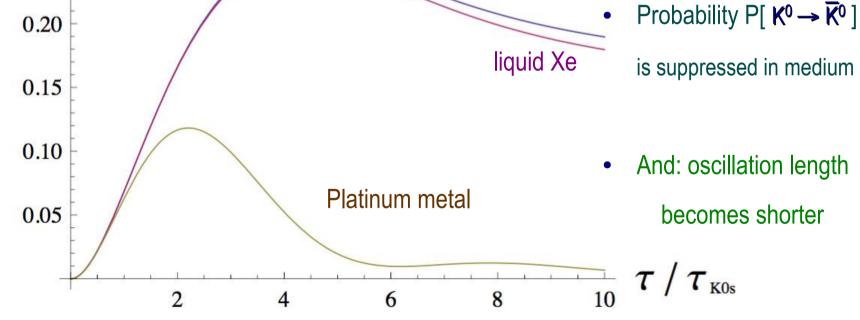
Eigenvectors:

$$|P_H
angle=p_H|P^0
angle+q_H|ar{P}^0
angle \quad rac{q_H}{p_H}=(1+ heta)rac{\Delta\mu}{2H_{12}}$$

$$\theta = \frac{M_{22} - M_{11} - \frac{i}{2}(\Gamma_{22} - \Gamma_{11})}{\sqrt{4H_{12}H_{21} + (H_{22} - H_{11})^2}}$$

CPT violation Complex parameter

see e.g. G. Branco et al. Book "CP Violation" Eq.(6.25 - 6.32)

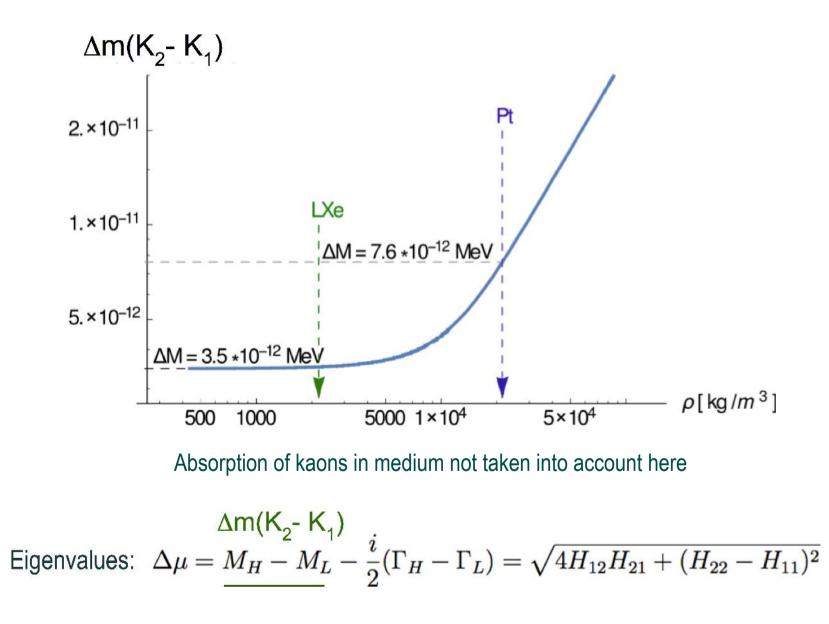

$$\begin{split} |K^{0}\rangle(t) &= [g_{+}(t) - \theta g_{-}(t)]|K^{0}\rangle + \frac{q_{H}}{p_{H}}(1-\theta)g_{-}(t)|\bar{K}^{0}\rangle & \text{Time evolution} \\ \frac{|\bar{K}^{0}\rangle(t)}{|\bar{K}^{0}\rangle(t)} &= [g_{+}(t) + \theta g_{-}(t)]|\bar{K}^{0}\rangle + \frac{p_{L}}{q_{L}}(1-\theta)g_{-}(t)|K^{0}\rangle & \text{strong K}^{0} \text{ states} \end{split}$$

For eigenvalues one has: $\Delta \mu = M_H - M_L - \frac{i}{2}(\Gamma_H - \Gamma_L) = \sqrt{4H_{12}H_{21} + (H_{22} - H_{11})^2}$

Strangeness oscillation in medium:

$$\begin{bmatrix} K^{0} \rightsquigarrow \bar{K}^{0} \end{bmatrix}_{(\tau)} = \left| \frac{q_{H}}{p_{H}} \right|^{2} |g_{-}(\tau)|^{2} |(1 - \theta)|^{2} \quad \text{Branco et al.: CP Violation Eq.(9.8)}$$

$$P \begin{bmatrix} K^{0} \rightarrow \text{anti} - K^{0} \end{bmatrix} \quad \text{Vacuum} \quad \text{Probability P} \begin{bmatrix} K^{0} \rightarrow \overline{K}^{0} \end{bmatrix}$$



• is weakly affected in Liquid detector media (compared to Vacuum)

(absorption neglected)

• Relativistic γ factor neglected here (increases effective medium density)

Mass difference $\Delta m(K_2 - K_1)$ in medium:

•

$K^0 \rightarrow \overline{K}^0$ conversion in Nuclear Medium

$$[K^{0} \rightsquigarrow \bar{K}^{0}]_{(\tau)} = \left|\frac{q_{H}}{p_{H}}\right|^{2} |g_{-}(\tau)|^{2} |(1-\theta)|^{2}$$

$$[\bar{K}^{0} \rightsquigarrow K^{0}]_{(\tau)} = \left|\frac{p_{L}}{q_{L}}\right|^{2} |g_{-}(\tau)|^{2} |(1-\theta)|^{2}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \left|\frac{p_{L}}{q_{L}}\right|^{2} |g_{-}(\tau)|^{2} |(1-\theta)|^{2}$$

$$|g_{-}(\tau)|^{2} \longrightarrow |g_{-}(\tau)|^{2} = \frac{1}{4} \left[e^{-\tau\Gamma_{H}} + e^{-\tau\Gamma_{L}} - 2\frac{\cos(\Delta \tilde{m}\tau)e^{-\tau(\Gamma_{H}+\Gamma_{L})/2}}{2\cos(\Delta \tilde{m}\tau)e^{-\tau(\Gamma_{H}+\Gamma_{L})/2}}\right]$$

$$K^{0} \rightarrow \bar{K}^{0} \text{ the same as } \bar{K}^{0} \rightarrow \bar{K}^{0} \text{ if } CP \text{ violation is neglected}$$

$$K^{0} \rightarrow \bar{K}^{0} \text{ the same as } \bar{K}^{0} \rightarrow \bar{K}^{0} \text{ if } CP \text{ violation is neglected}$$

$$K^{0} \rightarrow \bar{K}^{0} \text{ the same as } \bar{K}^{0} \rightarrow \bar{K}^{0} \text{ only if } N(\bar{K}^{0}) \rightarrow N(\bar{K}^{0})$$

anyway would't be visible in $K^{0}_{s} \text{ spectra}$

SUPPRESSION FACTOR ESTIMATE

$$\begin{split} P(K^0 \to \bar{K}^0) &= \left| \frac{q_H}{p_H} \right|^2 |1 - \theta|^2 |g_-(\tau)|^2 \\ \frac{\text{see G.C. Branco et al.}}{\text{in book: "CP Violation"}} & \left| \frac{q_H}{p_H} \right|^2 &= \frac{4|H_{21}|^2}{|\Delta\mu|^2} \frac{1}{|1 - \theta|^2} \end{split}$$

-

$$P(K^{0} \to \bar{K}^{0}) = \frac{|2H_{21}|^{2}}{|4H_{12}H_{21} + (H_{22} - H_{11})^{2}|} |g_{-}(\tau)|^{2} \to 10^{-12}$$

$$\approx \frac{|2H_{21}|^{2}}{|H_{22} - H_{11}|^{2}} |g_{-}(\tau)|^{2} = \frac{4|M_{21} - i\Gamma_{21}/2|^{2}}{\Delta V^{2}} |g_{-}(\tau)|^{2}$$
for $|H_{12}H_{21}| \ll |H_{22} - H_{11}|^{2} \approx \Delta V^{2}$

$$(80 \text{ MeV})^{2}$$

$$\rho = \rho_{N}$$

$K^0 \rightarrow \overline{K}^0$ conversion in Nuclear Medium

$$[K^{0} \rightsquigarrow \bar{K}^{0}]_{(\tau)} = \left|\frac{q_{H}}{p_{H}}\right|^{2} |g_{-}(\tau)|^{2} |(1-\theta)|^{2}$$

$$[\bar{K}^{0} \rightsquigarrow K^{0}]_{(\tau)} = \left|\frac{p_{L}}{q_{L}}\right|^{2} |g_{-}(\tau)|^{2} |(1-\theta)|^{2}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \left|\frac{p_{L}}{q_{L}}\right|^{2} |g_{-}(\tau)|^{2} |(1-\theta)|^{2}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}} = \left|\frac{q_{H}}{p_{H}}\right|^{2}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}} = \frac{q_{H}}{q_{H}}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}} = \frac{q_{H}}{q_{H}}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}} = \frac{q_{H}}{2}$$

$$[g_{-}(\tau)|^{2} = \frac{1}{4} \left[e^{-\tau\Gamma_{H}} + e^{-\tau\Gamma_{L}} - 2\frac{\cos(\Delta \tilde{m}\tau)e^{-\tau(\Gamma_{H}+\Gamma_{L})/2}}{2\cos(\Delta \tilde{m}\tau)e^{-\tau(\Gamma_{H}+\Gamma_{L})/2}}\right]$$

$$K^{0} \rightarrow \bar{K}^{0} \text{ the same as } \bar{K}^{0} \rightarrow \bar{K}^{0}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}}$$

$$K^{0} \rightarrow \bar{K}^{0} \text{ the same as } \bar{K}^{0} \rightarrow \bar{K}^{0}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}}$$

$$K^{0} \rightarrow \bar{K}^{0} \text{ the same as } \bar{K}^{0} \rightarrow \bar{K}^{0}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}}$$

$$K^{0} \rightarrow \bar{K}^{0} \text{ the same as } \bar{K}^{0} \rightarrow \bar{K}^{0}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}}$$

$$K^{0} \rightarrow \bar{K}^{0} \text{ the same as } \bar{K}^{0} \rightarrow \bar{K}^{0}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}}$$

$$K^{0} \rightarrow \bar{K}^{0} \text{ the same as } \bar{K}^{0} \rightarrow \bar{K}^{0}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_{(\tau)} = \frac{q_{H}}{q_{L}}$$

$$[g_{-}(\tau)|^{2} \longrightarrow K^{0}]_$$

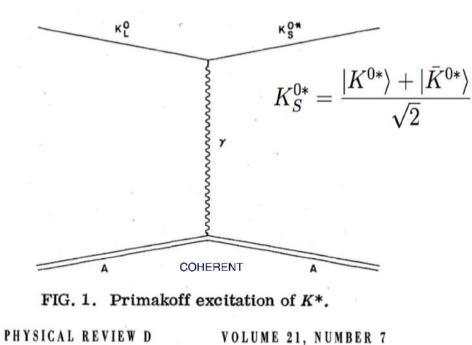
in K⁰_S spectra

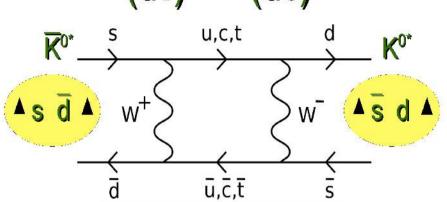
Assuming potential difference $dV(K-\overline{K}) = 80 \text{ MeV}$

Realistic Observation: 1) $K^0 \rightarrow \overline{K}^0$ oscillation is potentially fast enough in $(\rho = \rho_N)$ dense baryonic medium: $\tau_o \approx 10$ fm/c

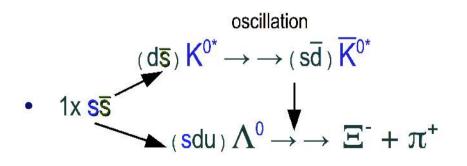
2) Subthreshold production needed: $N(\overline{K}) \ll N(K)$ to violate strangeness conservation (if $\delta_{CP} = 0$)

⇒ Suppression factor at $\rho \cong \rho_N$: sF ~ 10⁻²⁶ makes K⁰(ds) → $\overline{K}^0(ds)$ process negligible

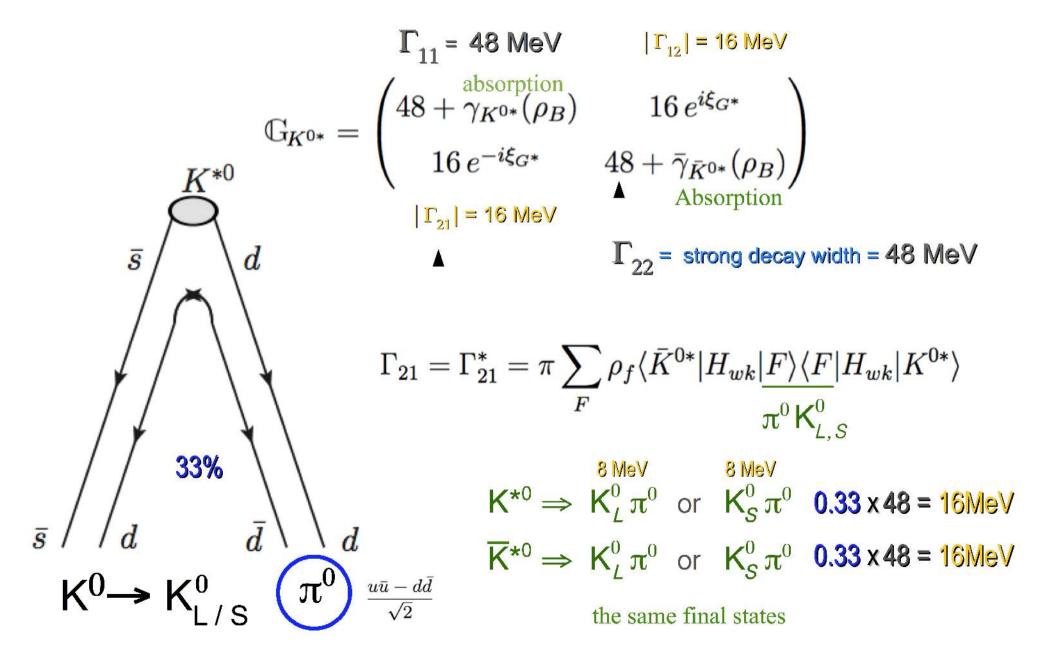

Don't Give UP for free!


Think about $K_{J=1}^{0*}(896)$ oscillations ! (ds) \leftrightarrow (ds)

$K_S^{0^*}$ and its uses


L. S. Littenberg Brookhaven National Laboratory, Upton, New York 11973 (Received 27 November 1979)

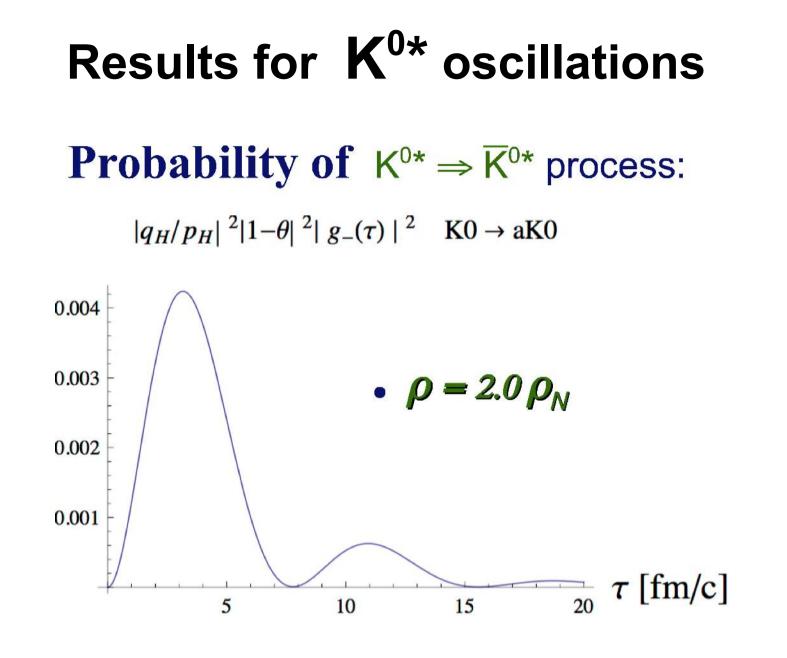
We point out that Primakoff conversion of K_L^0 's produces K_s^{0*} 's.

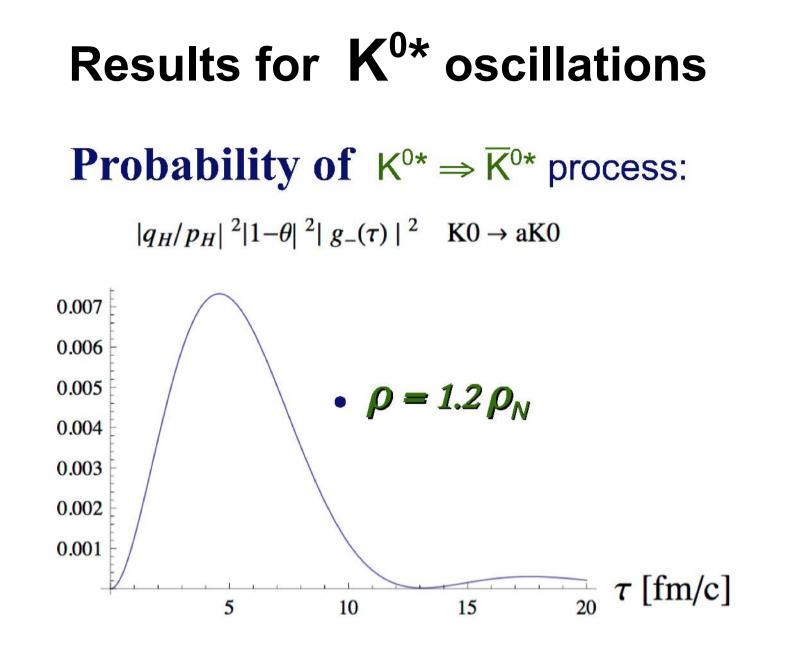


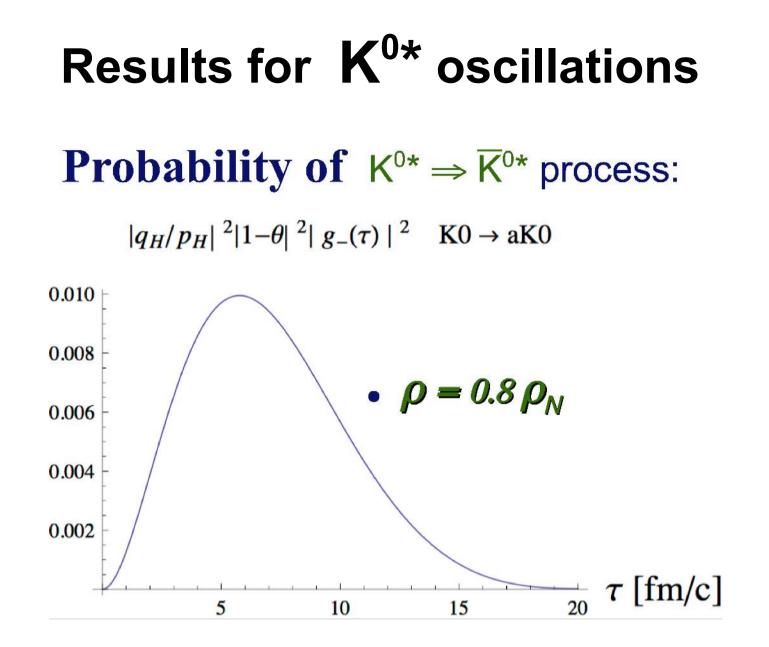
 $M_{21} = M_{21}^* = \langle \bar{K}^{0*} | H_{wk} | K^{0*} \rangle$ assume M₁₂ the same as for K⁰(497)

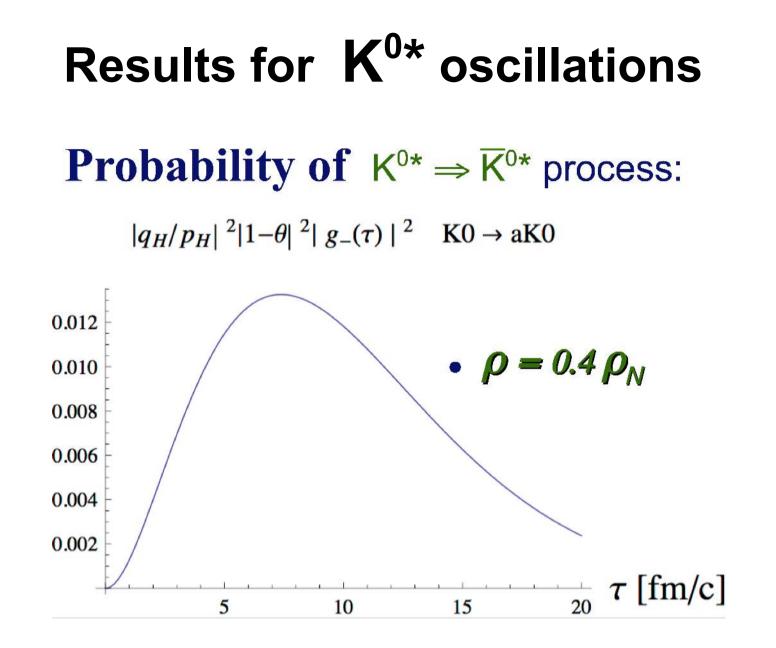
• K_S^{0*} quantum state exists and it can be produced.

K⁰*(896) decay matrix (Hamiltonian)

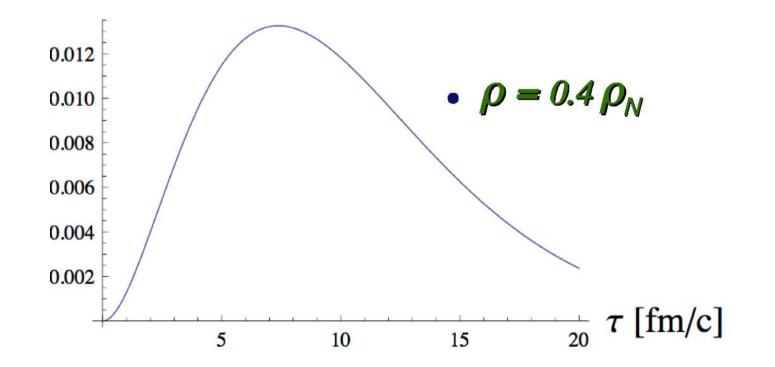



Hamiltonian for K⁰*(896)

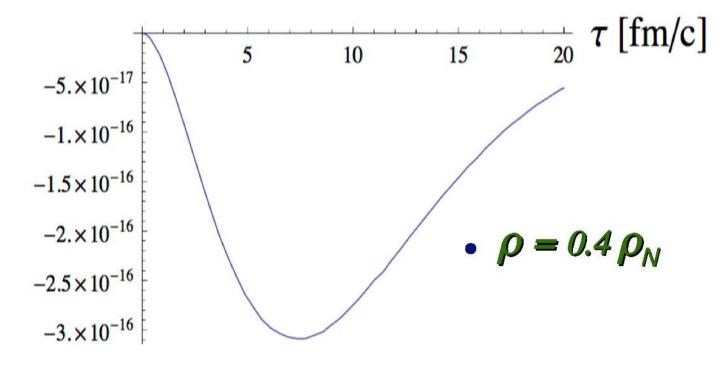

$$\begin{aligned} \mathbf{K}^{0^{*}}(\mathbf{896}) \\ \mathbb{G}_{K^{0*}} &= \begin{pmatrix} 48 + \gamma_{K^{0*}}(\rho_{B}) & \underline{16} e^{i\xi_{G^{*}}} \\ \underline{16} e^{-i\xi_{G^{*}}} & 48 + \bar{\gamma}_{\bar{K}^{0*}}(\rho_{B}) \end{pmatrix} \end{aligned} \qquad \begin{aligned} \mathbf{SUBSTANTIAL} \\ \underline{decay \ width} \\ \mathbf{K}^{0^{*}} \ differences \ \mathbf{K}^{0} \\ \mathbf{K}^{0^{*}} \ differences \ \mathbf{K}^{0} \\ e^{-i\xi_{G}}3.48 \cdot 10^{-12} & 3.7 \cdot 10^{-12} + \bar{\gamma}_{\bar{K}^{0}}(\rho_{B}) \end{pmatrix} \end{aligned}$$


$$\mathbb{M}_{K^{0*}} = \begin{bmatrix} +20 \text{ MeV} \\ 896 + V_{K^{0*}}(\rho_B) & e^{i\xi_{M^*}} 1.7 \cdot 10^{-12} \\ e^{-i\xi_{M^*}} 1.7 \cdot 10^{-12} & \underline{896} - \overline{V}_{\bar{K}^{0*}}(\rho_B) \end{bmatrix} \begin{bmatrix} -i\xi_{M^*} 1.7 \cdot 10^{-12} \\ -60 \text{ MeV} \end{bmatrix}$$

Assuming the same K^{*} in-medium potentials.



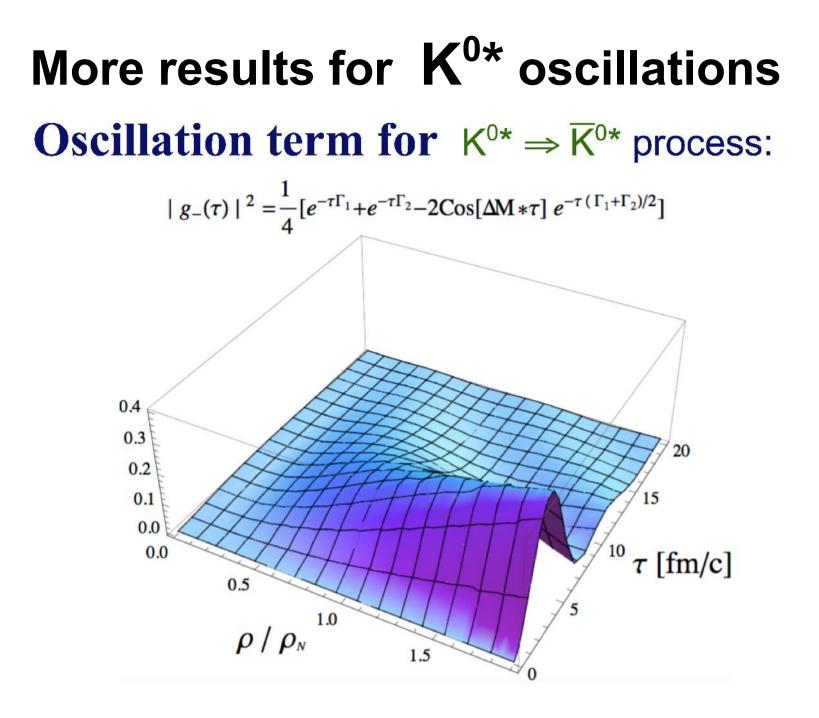
Probability of $\overline{\mathsf{K}}^{0*} \Rightarrow \mathsf{K}^{0*}$ reverse process


 $|p_L/q_L|^2 |1-\theta|^2 |g_-(\tau)|^2 \quad aK0 \to K0$

Results for K^{0*} oscillations

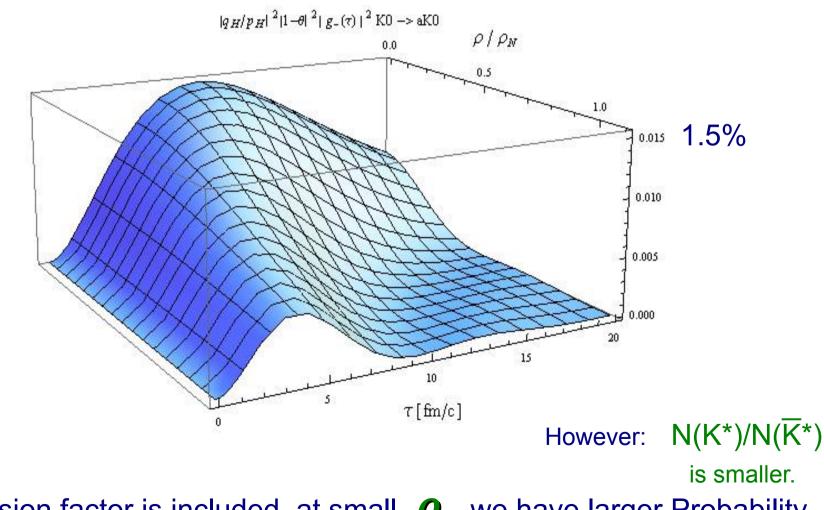
Difference between $\overline{\mathsf{K}}^{0*} \Rightarrow \mathsf{K}^{0*}$ and $\mathsf{K}^{0*} \Rightarrow \overline{\mathsf{K}}^{0*}$

 $(|p_L/q_L|^2 - |q_H/p_H|^2)|1 - \theta|^2|g_-(\tau)|^2$



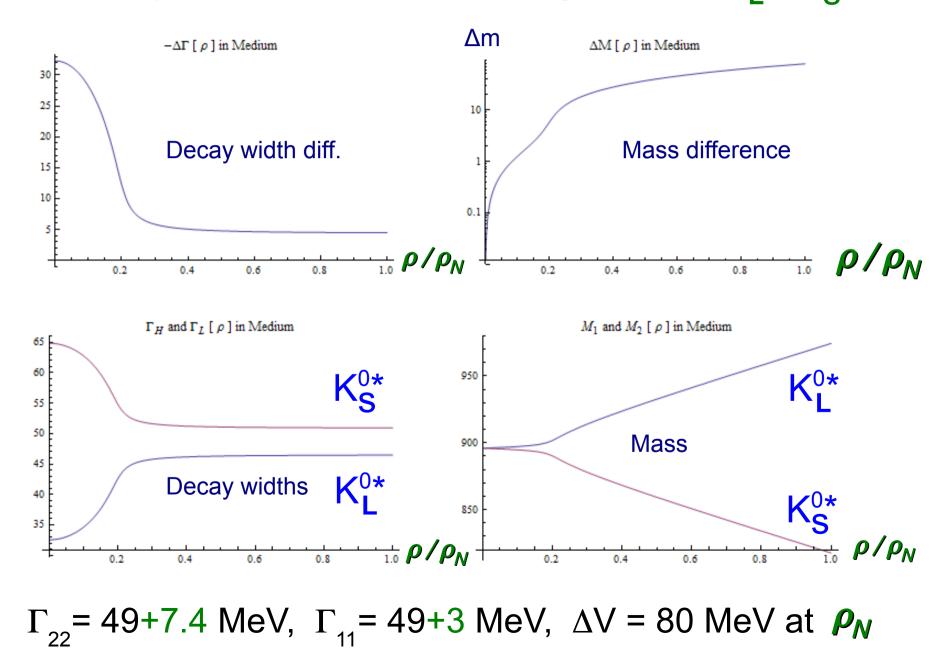
Observed Features: 1) Probability of $K^{0*} \Rightarrow \overline{K}^{0*}$ is 0.5% - 1.5%

2) Process ($\overline{s} \rightarrow s$) occurs within $\tau = 4 - 10$ fm/c


if net baryon density $\rho_B = [0.1 - 2.0]\rho_N$ [0.16 fm⁻³]

3) CP violation is not important = not needed (opposite process $\overline{K}^{0*} \Rightarrow K^{0*}$ has the same probability) process ($\overline{S} \rightarrow S$) becomes relevant = IF primordial N(K^{0*}) >> N(\overline{K}^{0*})

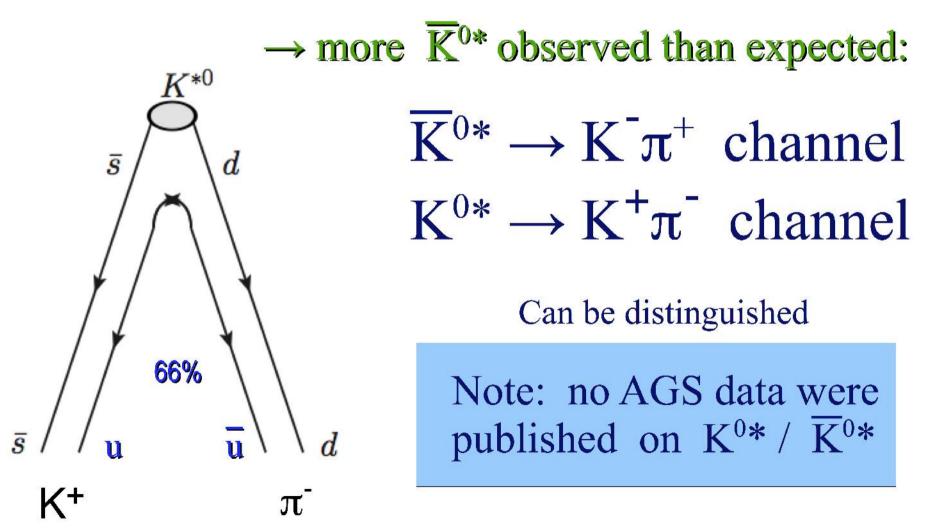
Suppression factor not shown.


More results for K^{0*} oscillations Transition probability $K^{0*} \Rightarrow \overline{K}^{0*}$:

If suppression factor is included, at small ρ_{R} we have larger Probability.

More results for K^{0*} , \overline{K}^{0*} in medium

Decay widths and Masses of eigenstates K_{I}^{0*} , K_{S}^{0*}


 $K^{0*} \Rightarrow K^{0*}$ and $\overline{K}^{0*} \Rightarrow \overline{K}^{0*}$ probability: Survival $[P^{0}(t) \to P^{0}]_{(\tau)} = |\langle P^{0} | P^{0}(\tau) \rangle|^{2} = |g_{+}(\tau) - \theta g_{-}(\tau)|^{2}$ $[\bar{P}^{0}(t) \to \bar{P}^{0}]_{(\tau)} = |\langle \bar{P}^{0} | \bar{P}^{0}(\tau) \rangle|^{2} = |g_{+}(\tau) + \theta g_{-}(\tau)|^{2}$ $|g_{+}(\tau)+\theta g_{-}(\tau)|^{2} \overline{K}^{0*}(t)$ $|g_{+}(\tau)-\theta g_{-}(\tau)|^{2}$ K^{0*}(t) 1.0 5 1.0 $\rho = \rho_N$ $=\rho_N$ 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 $\frac{1}{20}$ τ [fm/c] $\frac{1}{20}$ τ [fm/c] 15 15 10 5 10 5

Substantially different absorption cross sections assumed here.

$$\Gamma_{11} = 48 + 30 \text{ MeV}, \ \Gamma_{22} = 48 + 74 \text{ MeV} \text{ at } \rho = \rho_N$$

$\mathbb{K}^{0*} \rightarrow \overline{\mathbb{K}}^{0*}$ oscillation: CONSEQUENCE 1.

For a sub-threshold \overline{K}^* production: $100^*N(\overline{K}^*) < N(\overline{K}^*)$

$\mathbb{K}^{0*} \rightarrow \overline{\mathbb{K}}^{0*}$ oscillation: CONSEQUENCE II

Assume sub-threshold \overline{K}^* production: $N(\overline{K}^*) \leq N(\overline{K}^*)$

d S 66% 11

 \rightarrow more \overline{K}^{0*} than expected $\overline{K}{}^{0*} \to \overline{K}{}^{-}\pi^{+}_{\text{gives excessive }} \overline{K}{}^{-}$ $K^{/}K^{+}$ or $K^{/}\pi$ anomaly may appear in exp. Data.

SUMMARY Ia

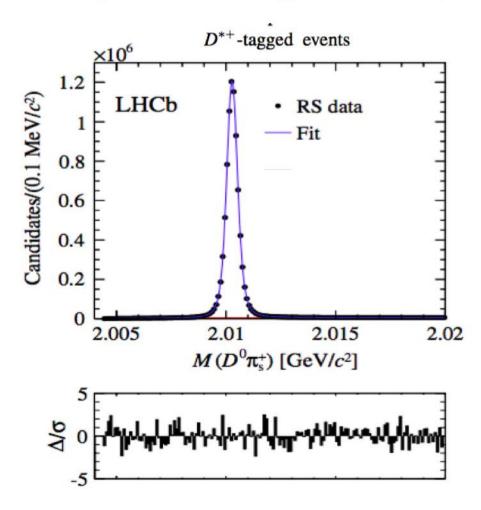
1) $\mathbb{K}^0 \to \overline{\mathbb{K}}^0$ in A+A, p+A collisions is negligible

suppression factor $\leq 10^{-26}$

2) $\mathbb{K}^{0*} \to \overline{\mathbb{K}}^{0*}$ oscillation can be significant + fast enough \rightarrow it may affect $\overline{\mathbb{K}}$ yields and ratios (just in case of sub-threshold anti- \mathbb{K}^{*} production)

3) Production of (2ss) hyperons may thus be enhanced

via secondary strangeness-exchange reactions.


 $\Lambda^0 + \overline{\mathbf{K}}{}^{0*} \rightarrow \Xi^- + \pi^+$

D°-D° oscillation in Vacuum

PHYSICAL REVIEW LETTERS

Observation of $D^0 - \overline{D}^0$ **Oscillations**

(LHCb Collaboration) (Received 6 November 2012; published 5 March 2013)

 $c\tau_{osc} = 2\pi\hbar c/\Delta m$

 D^0 , \overline{D}^0 decay too fast, for typical oscillation pattern in vacuum to be clearly visible. Instead, **LHCb measures rising Ratio of "WS/RS" decays**.

probability corresponding to 9.1 standard deviations

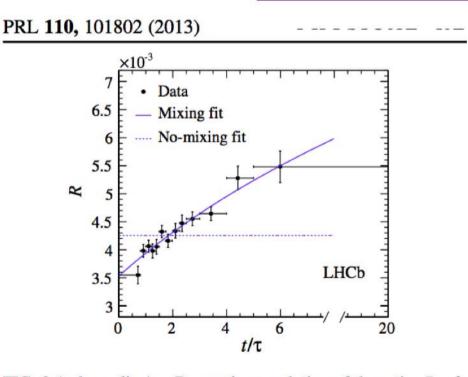
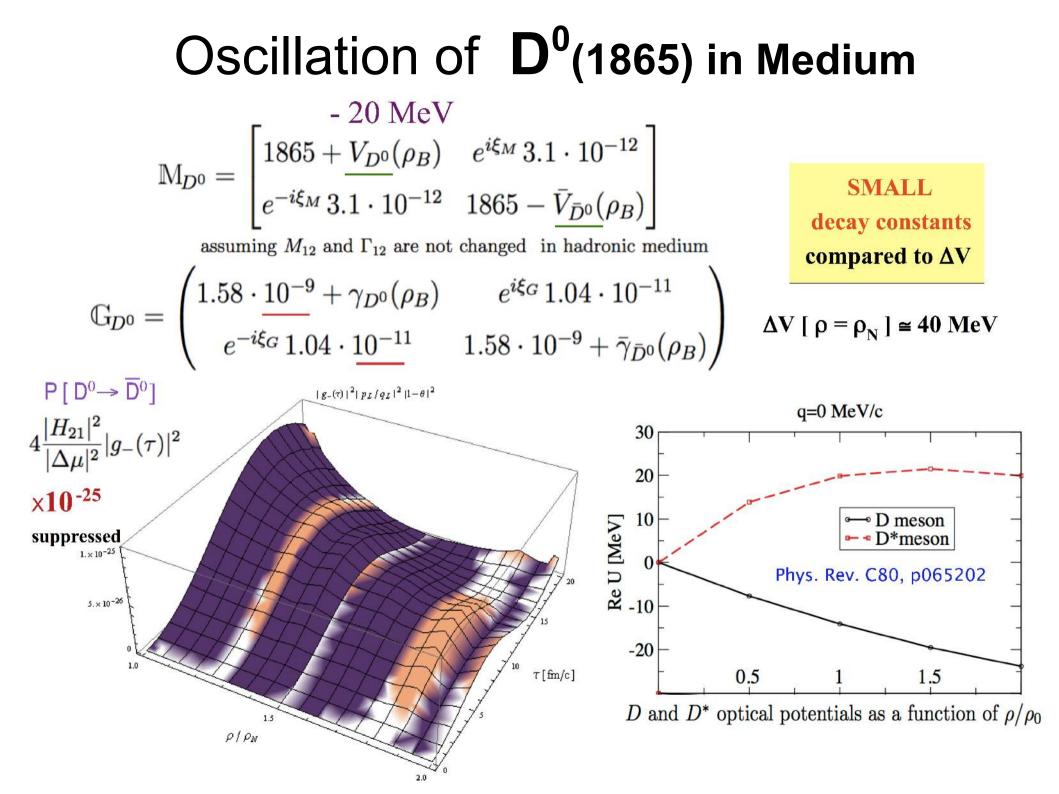


FIG. 2 (color online). Decay-time evolution of the ratio, R, of WS $D^0 \rightarrow K^+ \pi^-$ to RS $D^0 \rightarrow K^- \pi^+$ yields (points) with the projection of the mixing allowed (solid line) and no-mixing

$$D^{0*}(2007)$$
 and D^{0} behavior in Medium

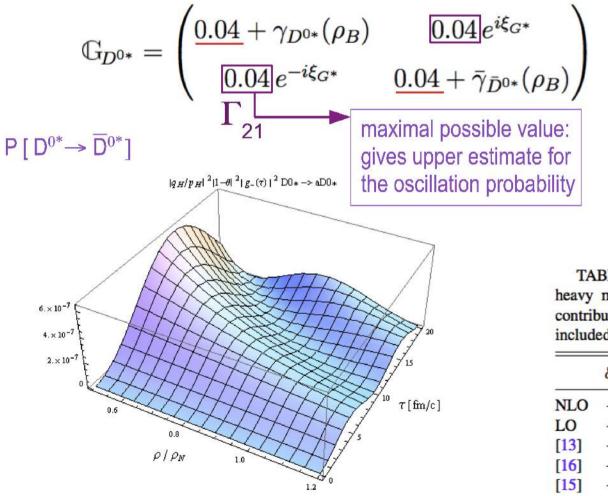

Table 1: Oscillation parameters of neutral K^0, D^0, B^0 , and B_s^0 mesons in vacuum.

	K^0	D^0	B^0	B_s^0	
$\Delta m[{\rm MeV}]$	$3.5\!\times\!10^{-12}$	$\approx 6.3\!\times\!10^{-12}$	$3.3\!\times\!10^{-10}$	$11.7\!\times\!10^{-9}$	
$\Delta m \left[\frac{10^{10}\hbar}{s}\right]$	0.529 ± 0.001	0.95 ± 0.44	51.0 ± 0.3	1776 ± 2	
$\tau_0 \ [10^{-12} s]$	89.5^{*}	0.401	1.52	1.51	
$\tau_{osc} \left[10^{-12} \mathrm{s} \right]$	1187	≈ 660	12.3	0.35	
$ au_{osc}/ au_0$	13.1^{*}	≈ 1650	8.2	0.23	
$c \cdot \tau_0$	$2.7^{*}\mathrm{cm}$	$0.123\mathrm{mm}$	$0.45\mathrm{mm}$	$0.45\mathrm{mm}$	
$c \cdot \tau_{osc}$	$35\mathrm{cm}$	$\approx 20\mathrm{cm}$	$3.7\mathrm{mm}$	$0.11\mathrm{mm}$	

 D^0 , \overline{D}^0 decays too fast, for typical oscillation pattern in vacuum to be clearly visible. Eigenstate D^0_1 or D^0_2 exists virtually, but it has no time to be formed.

$$c\tau_{osc} = 2\pi \hbar c / \Delta m$$
 = 30 fm
197 MeVfm 40MeV } in Nuclei

optical potential difference \overline{D}^0 - D^0



Oscillation of $D^{0*}(2007)$ in Medium

$$\mathbb{M}_{D^{0*}} = \begin{bmatrix} 2007 + V_{D^{0*}}(\rho_B) & e^{i\xi_{M^*}} 3 \cdot 10^{-12} \\ e^{-i\xi_{M^*}} 3 \cdot 10^{-12} & 2007 - \bar{V}_{\bar{D}^{0*}}(\rho_B) \end{bmatrix}$$

10 14-17

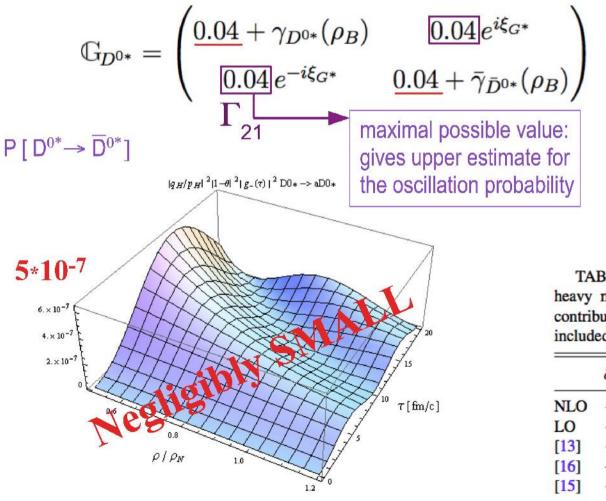
assuming M_{12} and Γ_{12} are not changed in hadronic medium

 $\frac{\Gamma_{D^*o} \approx 40 \text{ keV and hence}}{Physics Letters B 418 (1998) 383-388}$ $\Gamma_{D^{*+}} \approx 3 \Gamma_{D^{*0}} |\frac{P_{\pi(D^{*+})}}{P_{\pi}D_o^*}|^3 \approx 90 \text{ keV}.$

small decay widths compared to ΔV

$\Delta V \ [\ \rho = \rho_N \] \cong 80 \ MeV$

TABLE II. The shifts of the masses and decay constants of the heavy mesons in nuclear matter, where NLO (LO) denotes that contributions up to the next-to-leading order (leading order) are included; the unit is MeV.


	δm _D	δm_{D^*}	δm_{D_0}	δm_{D_1}	δm_B	δm_{B^*}	δm_{B_0}	δm_{B_1}
NLO	-72	-102	80	97	-473	-687	295	522
LO	-47			66	-329	-340	209	260
[13]	-48	-	6					
[16]	+45				+60			
[15]	-46	PHYSICAL REVIEW C 92, 065205 (2015)						

Oscillation of $D^{0*}(2007)$ in Medium

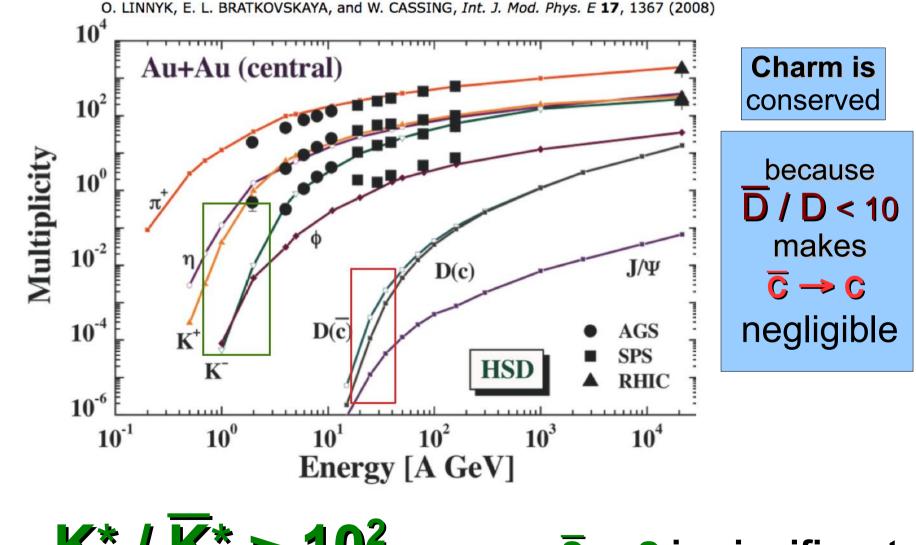
$$\mathbb{M}_{D^{0*}} = \begin{bmatrix} 2007 + V_{D^{0*}}(\rho_B) & e^{i\xi_{M^*}} \cdot 3 \cdot 10^{-12} \\ e^{-i\xi_{M^*}} \cdot 3 \cdot 10^{-12} & 2007 - \bar{V}_{\bar{D}^{0*}}(\rho_B) \end{bmatrix}$$

10 11-11

assuming M_{12} and Γ_{12} are not changed in hadronic medium

 $D^{0*} \to D^{0} + \pi^{0} \quad 62\%$ $D^{0*} \to D^{0} + \gamma \quad 38\%$

 $\frac{\Gamma_{D^*o} \approx 40 \text{ keV and hence}}{Physics Letters B 418 (1998) 383-388}$ $\Gamma_{D^{*+}} \approx 3 \Gamma_{D^{*0}} |\frac{P_{\pi(D^{*+})}}{P_{\pi}D_o^*}|^3 \approx 90 \text{ keV}.$


small decay widths compared to ΔV

$\Delta V [\rho = \rho_N] \cong 80 \text{ MeV}$

TABLE II. The shifts of the masses and decay constants of the heavy mesons in nuclear matter, where NLO (LO) denotes that contributions up to the next-to-leading order (leading order) are included; the unit is MeV.

	δm _D	δm_{D^*}	δm_{D_0}	δm_{D_1}	δm _B	δm_{B^*}	δm_{B_0}	δm_{B_1}
NLO	-72	-102	80	97	-473	-687	295	522
LO	-47		54	66	-329	-340	209	260
[13]	-48		6					
[16]	+45				+60			
[15]	-46	PHYSICAL REVIEW C 92, 065205 (2015)						

(sub) Threshold D, K meson Production Ratios

when $\mathbf{K}^* / \mathbf{\overline{K}}^* \ge 10^2$, process $\mathbf{\overline{S}} \rightarrow \mathbf{S}$ is significant

CONCLUSIONS.

1) oscillation $\overline{\mathsf{K}}^{0*} \leftrightarrow \mathsf{K}^{0*}$ in dense baryonic matter possible (processes $S \rightarrow \overline{S}$ and $\overline{S} \rightarrow S$ having same probability)

2) if N(K⁰, K^{0*}) >> N($\overline{K}^0, \overline{K}^{0*}$) due to S quarks taken by Λ, Σ real or virtual $K^{0*}(\overline{sd}) \rightarrow \overline{K}^{0*}(\overline{sd})$ transitions may:

- enhance the Yields of $\overline{\mathbf{K}}^{0^*}$ and \mathbf{K}^- in A+A, p+A coll. - effectively violate strangeness conservation at high ρ_{R}
- 3) $\Xi^{-}(dds)$ sub-threshold production may be explainable using strangeness exchange reaction $\Lambda + \overline{K}^{0sc} \rightarrow \Xi + \pi$

4) Charm is conserved ! Strangeness is not at high $\rho_{\rm B}$

THANK YOU FOR

ATTENTION

SUPPRESSION FACTOR ESTIMATE

$$P(K^{0} \to \bar{K}^{0}) = \left| \frac{q_{H}}{p_{H}} \right|^{2} |1 - \theta|^{2} |g_{-}(\tau)|^{2}$$
see G.C. Branco et al.
in book: "CP Violation"
Eq.(9.3) Eq.(6.29-32)
$$\left| \frac{q_{H}}{p_{H}} \right|^{2} = \frac{4|H_{21}|^{2}}{|\Delta\mu|^{2}} \frac{1}{|1 - \theta|^{2}}$$

$$P(K^{0} \to \bar{K}^{0}) = \frac{|2H_{21}|^{2}}{|4H_{12}H_{21} + (H_{22} - H_{11})^{2}|} |g_{-}(\tau)|^{2}$$

$$\approx \frac{|2H_{21}|^{2}}{|H_{22} - H_{11}|^{2}} |g_{-}(\tau)|^{2} = \frac{4|M_{21} - i\Gamma_{21}/2|^{2}}{\Delta V^{2}} |g_{-}(\tau)|^{2}$$
for $|H_{12}H_{21}| \ll |H_{22} - H_{11}|^{2} \approx \Delta V^{2}$
(80 MeV)²

FN