Examination of in-medium heavy-quark energy-loss mechanisms via angular correlations between heavy and light mesons
M. Rohrmoser, P.-B. Gossiaux, T. Gousset, J. Aichelin from SUBATECH, Nantes

June 30, 2016
XVI Strangeness in Quark Matter, Berkeley

Some samples of $R_{A A}$

[CMS Collaboration, CMS-PAS-HIN-16-001.]

Overview

Approach in 2 directions:

Strategy of the analysis:

(1) heavy-light-particle (angular) correlations: overall medium effects?
(2) Search for origin of differences:
specific shower processes + individual parton branchings.
(3) Extract medium dependent quantities from global results.

Production of heavy-quark showers:

situation	vacuum	Inelastic	Elastic
Description	splitting functions	model A	model B
In-medium energy-loss	additional branchings	transfer shower \longrightarrow medium	
\longrightarrow			

In-medium propagation: inelastic scattering

Model A:
[Th. Renk: Phys.Rev.C 78, 034908 (2008)]
Virtuality increases/no changes in 3-momenta per small timesteps Δt :

$$
\begin{align*}
& Q \mapsto \sqrt{Q^{2}+\hat{q} \Delta t}, \\
& \vec{p} \mapsto \vec{p}, \\
& E \mapsto \sqrt{E^{2}+\hat{q} \Delta t} . \tag{1}
\end{align*}
$$

\Rightarrow 3-momenta in shower only changed due to additional radiation!

(Azimuthal) Angular correlations

Correlations of heavy quark \& any light particle:

$$
\cos (\Delta \phi)=\frac{\vec{p}_{h \perp} \perp \vec{p}_{\mid \perp}}{\left\|\vec{p}_{\perp \perp}\right\|\left\|\vec{p}_{I \perp}\right\|},
$$

[S. Bjelogrlić: J. Phys. Conf. Ser. 636,012002 (2015)]

(Azimuthal) Angular correlations

Correlations of heavy quark \& any light particle:

$$
\cos (\Delta \phi)=\frac{\vec{p}_{h \perp} \cdot \vec{p}_{\mid \perp}}{\left\|\vec{p}_{h \perp}\right\|\left\|\vec{p}_{I \perp}\right\|},
$$

from physical viewpoint pretty equivalent to
$\cos (\Delta \theta)=\frac{\vec{p}_{h} \cdot \vec{p}_{l}}{\left\|\vec{p}_{h}\right\|\left\|\vec{p}_{l}\right\|}$.

$\Delta Q^{2}=\int_{\tau_{i n i}}^{\tau_{\text {fin }}} d t \hat{q}(t)$
$\frac{d N}{d \cos (\Delta \theta)}$

Angular Broadening

More sensitive observables?

Individual shower contributions to angular correlations

\rightarrow Look at contributions from different topologies/processes with different numbers of emitted particles, e.g.:

Individual shower contributions to angular correlations

\rightarrow Look at contributions from different topologies/processes with different numbers of emitted particles, e.g.:

Individual shower contributions to angular correlations

\rightarrow Look at contributions from different topologies/processes with different numbers of emitted particles, e.g.:
medium effect: $2^{\text {nd }}$ splitting, mostly(i.e.: for smaller angles)

Individual shower contributions to angular correlations

\rightarrow Look at contributions from different topologies/processes with different numbers of emitted particles, e.g.:
medium effect: $2^{\text {nd }}$ splitting, mostly(i.e.: for smaller angles)

Which observable for a full shower?

Angular Ordering?

Compare angles between momenta of a light particle and: the heavy particle. . $\Delta \theta \longrightarrow$ contain heavy quark branchings the entire jet. .. $\Delta \theta_{\text {jet }} \longrightarrow "$ history" of previous branchings

contributions from 3 splittings:

Angular Ordering?

Compare angles between momenta of a light particle and: the heavy particle. . $\Delta \theta \longrightarrow$ contain heavy quark branchings the entire jet. . $\Delta \theta_{\text {jet }} \longrightarrow "$ history" of previous branchings

results for arbitrary N_{S} :

Conclusions for observables from model A

- angular broadening verified.
- refined analysis of broadening
\longrightarrow small angles affected most strongly.
- indications for angular ordering violations.

Conclusions for observables from model A

- angular broadening verified.
- refined analysis of broadening
\longrightarrow small angles affected most strongly.
- indications for angular ordering violations.

In-medium propagation: elastic scattering

Model B:

Forces transverse and parallel to incident 3-momenta $\vec{p}+$ changes in particle energy; $Q=$ constant:

$$
\begin{align*}
& \vec{p}=(\overrightarrow{0}, p) \mapsto \vec{p}^{\prime}=\left(\vec{p}_{\perp}, p_{\|}\right), \\
& p_{\perp}=\sqrt{\sqrt{\hat{q}} \Delta t}, \quad \quad p_{\|}=p-\sqrt{A} \Delta t . \tag{2}\\
& \text { (longitudinal) } \\
& \text { drag force } \\
& \text { transverse momentum } \\
& \text { transfer }
\end{align*}
$$

$$
\begin{equation*}
A=\frac{\hat{q}}{\kappa T} \tag{3}
\end{equation*}
$$

A...drag force,
T... Temperature (medium),
$\kappa \ldots$ proportionality constant.
[H. Berrehrah, P. B. Gossiaux, J. Aichelin, W. Cassing, E. Bratkovskaya: Phys. Rev. C90, 064906 (2014)]
\Rightarrow 3-momenta changed via stochastic force from medium, but no additional radiation!

In-medium propagation: elastic scattering

Model B:

Forces transverse and parallel to incident 3-momenta $\vec{p}+$ changes in particle energy; $Q=$ constant:

Energy \rightarrow Medium

$$
\begin{equation*}
A=\frac{\hat{q}}{\kappa T} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \vec{p}=(\overrightarrow{0}, p) \mapsto \vec{p}^{\prime}=\left(\vec{p}_{\perp}, p_{\|}\right), \\
& p_{\perp}=\sqrt{\sqrt{\hat{q}} \Delta t}, \quad \quad p_{\|}=p-\sqrt{A} \Delta t . \tag{2}\\
& \text { (longitudinal) } \\
& \text { drag force } \\
& \text { transverse momentum } \\
& \text { transfer }
\end{align*}
$$

A...drag force,
T... Temperature (medium),
$\kappa \ldots$ proportionality constant.
[H. Berrehrah, P. B. Gossiaux, J. Aichelin, W. Cassing, E. Bratkovskaya: Phys. Rev. C90, 064906 (2014)]
\Rightarrow 3-momenta changed via stochastic force from medium, but no additional radiation!

Differences in $\Delta \theta$ for models A and B ?

$\langle\Delta \theta\rangle[\mathrm{rad}]$

Angular Broadening: different energy dependencies for model A and B ?

Differences in $\Delta \theta$ for models A and B ?

$\langle\Delta \theta\rangle[\mathrm{rad}]$

Angular Broadening: different energy dependencies for model A and B ?

Summary

- Angular correlations as possible way to study medium effects!
- 2 mechanisms of energy loss simulated: inelastic (model A) and elastic scattering (model B).
- Angular broadening reflected in results!
- ...allows to distinguish hot and dense medium from vacuum...
- ...and maybe different energy-loss mechanisms from one another (further, ongoing studies)!

Thank you for your attention!

Backup

Contributions from different processes

Dominant: Small number of branchings N_{S} ! $\frac{d N}{d \Delta \theta}$

Processes of 1 quark $\longrightarrow 2$ gluons: $\approx 10 \%$

Branching angles

$\left\langle\vartheta_{i}\right\rangle[\mathrm{rad}]$

inversion of angular ordering in the medium

