Examination of in-medium heavy-quark energy-loss mechanisms via angular correlations between heavy and light mesons

> M. Rohrmoser, P.-B. Gossiaux, T. Gousset, J. Aichelin from SUBATECH, Nantes

> > June 30, 2016 XVI Strangeness in Quark Matter, Berkeley

Some samples of R_{AA}

Overview

Observables

Approach in 2 directions:

Strategy of the analysis:

- heavy-light-particle (angular) correlations: overall medium effects?
- Search for origin of differences: specific shower processes + individual parton branchings.
- Stract medium dependent quantities from global results.

Production of heavy-quark showers:

situation	vacuum	Inelastic	Elastic
Description	splitting	model A	model B
	functions		
In-medium		additional	transfer
energy-loss		branchings	$shower \longrightarrow medium$
			→
Mechanisms			

In-medium propagation: inelastic scattering

Model A:

[Th. Renk: Phys.Rev.C 78, 034908 (2008)]

Virtuality increases/no changes in 3-momenta per small timesteps Δt :

$$\begin{aligned} Q &\mapsto \sqrt{Q^2 + \hat{q} \Delta t} \,, \\ \vec{p} &\mapsto \vec{p} \,, \\ E &\mapsto \sqrt{E^2 + \hat{q} \Delta t} \,. \end{aligned} \tag{1}$$

 \Rightarrow 3-momenta in shower only changed due to additional radiation!

(Azimuthal) Angular correlations

Correlations of heavy quark & any light particle:

[S. Bjelogrlić: J. Phys. Conf. Ser. 636,012002 (2015)]

Rohrmoser, Gossiaux, Gousset, Aichelin Energy-loss mechanisms

(Azimuthal) Angular correlations

Correlations of heavy quark & any light particle:

Rohrmoser, Gossiaux, Gousset, Aichelin Energy-loss mechanisms/angular correlations

Angular Broadening

More sensitive observables?

 \rightarrow Look at contributions from different topologies/processes with different numbers of emitted particles, e.g.:

8 / 15

 \rightarrow Look at contributions from different topologies/processes with different numbers of emitted particles, e.g.:

 \rightarrow Look at contributions from different topologies/processes with different numbers of emitted particles, e.g.:

 \rightarrow Look at contributions from different topologies/processes with different numbers of emitted particles, e.g.:

Which observable for a full shower?

Angular Ordering?

Compare angles between momenta of a light particle and:

the heavy particle... $\Delta \theta \longrightarrow$ contain heavy quark branchings the entire jet... $\Delta \theta_{jet} \longrightarrow$ "history" of previous branchings

 $\Delta \theta_{iet}$

 $\rightarrow \frac{d^2 N}{d\Delta \theta d\Delta \theta_{\rm int}}$

Angular Ordering?

Compare angles between momenta of a light particle and:

the heavy particle... $\Delta \theta \longrightarrow$ contain heavy quark branchings the entire jet... $\Delta \theta_{jet} \longrightarrow$ "history" of previous branchings

 $\Delta \theta_{in}$

results for arbitrary N_{S} :

 $\rightarrow \frac{d^2 N}{d\Delta\theta d\Delta\theta_{iot}}$

Rohrmoser, Gossiaux, Gousset, Aichelin Energy-loss mechanisms/angular correlations

Conclusions for observables from model A

Observables

- angular broadening verified.
- indications for angular ordering violations.

Conclusions for observables from model A

Observables

- angular broadening verified.
- indications for angular ordering violations.

model A model B

In-medium propagation: elastic scattering

Model B:

Forces transverse and parallel to incident 3-momenta \vec{p} + changes in particle energy; Q=constant:

[H. Berrehrah, P. B. Gossiaux, J. Aichelin, W. Cassing, E. Bratkovskaya: Phys. Rev. C90, 064906 (2014)]

 \Rightarrow 3-momenta changed via stochastic force from medium, but no additional radiation!

In-medium propagation: elastic scattering

Model B:

Forces transverse and parallel to incident 3-momenta \vec{p} + changes in particle energy; Q=constant:

[H. Berrehrah, P. B. Gossiaux, J. Aichelin, W. Cassing, E. Bratkovskaya: Phys. Rev. C90, 064906 (2014)]

 \Rightarrow 3-momenta changed via stochastic force from medium, but no additional radiation!

Differences in $\Delta \theta$ for models A and B?

Angular Broadening: different energy dependencies for model A and B?

Differences in $\Delta \theta$ for models A and B?

Angular Broadening: different energy dependencies for model A and B?

- Angular correlations as possible way to study medium effects!
- 2 mechanisms of energy loss simulated: inelastic (model A) and elastic scattering (model B).
- Angular broadening reflected in results!
- ...allows to distinguish hot and dense medium from vacuum...
- ...and maybe different energy-loss mechanisms from one another (further, ongoing studies)!

Thank you for your attention!

Backup

Contributions from different processes

Branching angles

