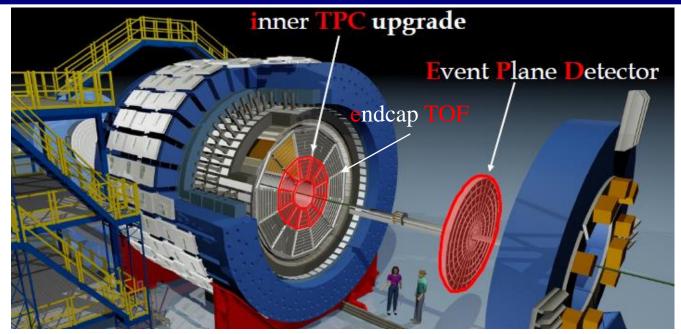
The iTPC upgrade at STAR

Chi Yang for the STAR collaboration

University of Science and Technology of China

- Introduction
- Motivation
- Physics impaction in BES II
- Upgrade details
- Summary



Upgrade plan for BES II

iTPC upgrade:

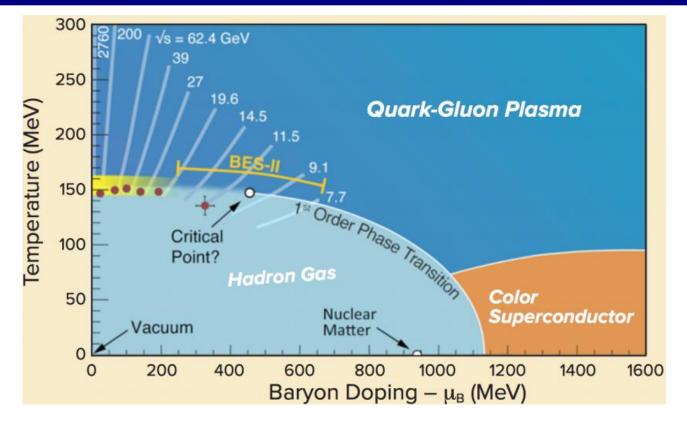
ТРС	iTPC upgrade
Sparse pad rows	Continuous pad rows
η <1	η <1.5 (geometric 1.7)
p _T >125 MeV/c	p _T >60 MeV/c
	Better dE/dx resolution

EPD upgrade:

1.8 < η < 4.2 **J. Zhang, Thu., 11:00** Replaces ageing BBC

Greatly improved Event Plane info (esp. 1st-order EP); Better trigger & b/g reduction.

eTOF upgrade:


−1.6 < η < −1.1

A. Schmah, Fri.,9:30

Physics motivation

RHIC Beam Energy Scan Phase 1 (BES I) From 2010 to 2014

7 collision energies 62, 39, 27, 19.6, 11.5 and 7.7 GeV Vary temperature T and baryon chemical potential μ_B

Search for

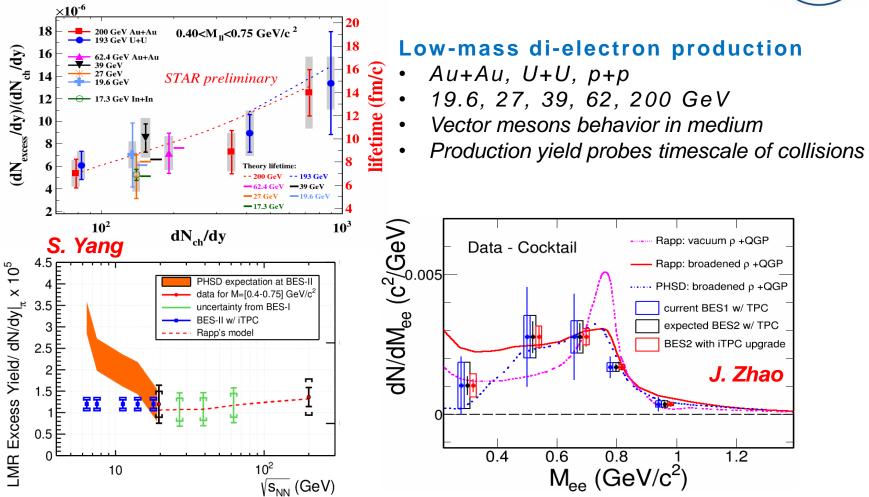
- Turn-off of sQGP signature
- Signs of 1st order phase transition
- The QCD critical point
- Vector meson behavior in QGP



Collision Energies (GeV):	7.7	9.1	11.5	14.5	19.6
Chemical Potential (MeV):	420	370	315	260	205
Observables	1	Millions o	of Events	Needeo	1
$R_{\rm CP}$ up to $p_{\rm T}$ 4.5 GeV	NA	NA	160	92	22
Local Parity Violation (CME)	50	50	50	50	50
asHBT (proton-proton)	35	40	50	65	80
Directed Flow studies (v_1)	50	75	100	150	200
net-proton kurtosis (κσ²)	80	100	150	200	300
Elliptic Flow of ϕ meson (v_2)	100	150	200	300	400
Dileptons	100	160	230	300	400
Proposed Event Goals:	100	160	230	300	400
Projected Weeks with LEReC	14	9.5	5.0	2.5	3.0+
In BES I	4	-	12	20	36

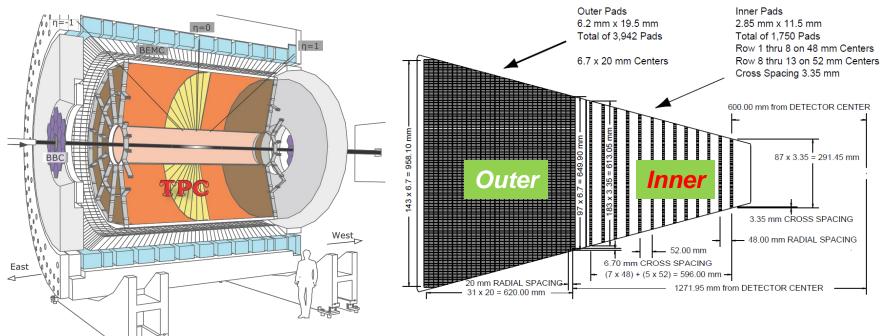
STAR

Net-proton cumulants in BES II


BES I has revealed non-trivial energy dependence

- Rapidity length of correlation is important
- ✓ Measure as fct. of Δy_p in wide range is needed to establish true nature of correlation
- iTPC upgrade will enable this measurement in wider range

Di-electron measurements in BES II



- Improved dE/dx will reduce the dominant systematic error on current data significantly
- Systematically study continuum from 7.7-19.6 GeV
- Distinguish model with different rho-meson broadening
- Study effect of total baryon density on LMR excess

TPC at STAR

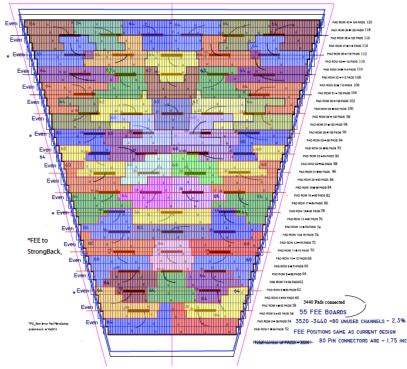
Working gas: P10 90% Ar +10 CH₄ Atmospheric + 2mbar

Readout: ~40us open window for ~2.1m drift length each side

Sector: 12 sectors each side X 2 sides

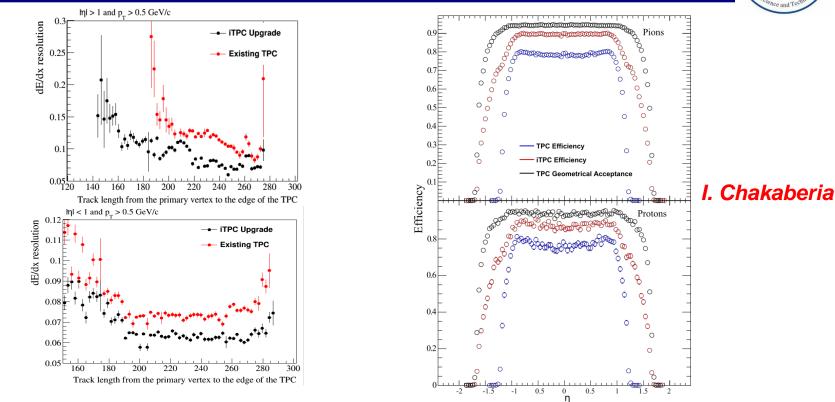
Gain: ~ 3700 for inner ~1200 for outer

2016/6/29



iTPC upgrade content

Produce and replace all 24 inner sectors including:


- Increase readout channels by about a factor of two
 -- Provide complete coverage for an inner sector
- Renew all three wire frames
 -- Replace ageing wires
- New electronics for inner sectors
 -- Double # of readout channels per FEE
- New designed insertion tools
 - -- Install and replace sectors
- New designed strongback
 - -- Optimize slot position for FEEs

Pad plane layout for one sector

Simulated improved performance

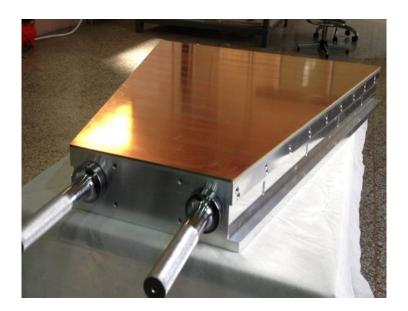
dE/dx resolution is significantly improved -- increased effective measured track length in TPC

The pseudo-rapidity coverage is nearing the geometrical acceptance limits of the detector -- enables reconstruction of the low transverse momenta particles

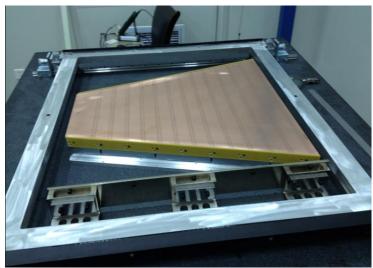
Electronics

- iFEE based on current FEE layout, with ALICE SAMPA chip
- Twice #channels per FEE
- iRDO based upon a commercial daughtercard which houses the FPGA, PROM, SDRAM, clocks etc

Pre-prototye iFEE electronic card shown plugged into the padplane


RDO prototype

TPC sectors



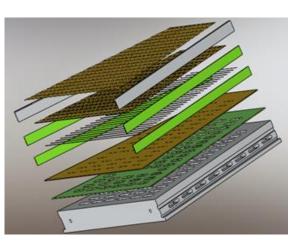
MWPC production: SDU, USTC, SINAP

Padplane glued onto strongback

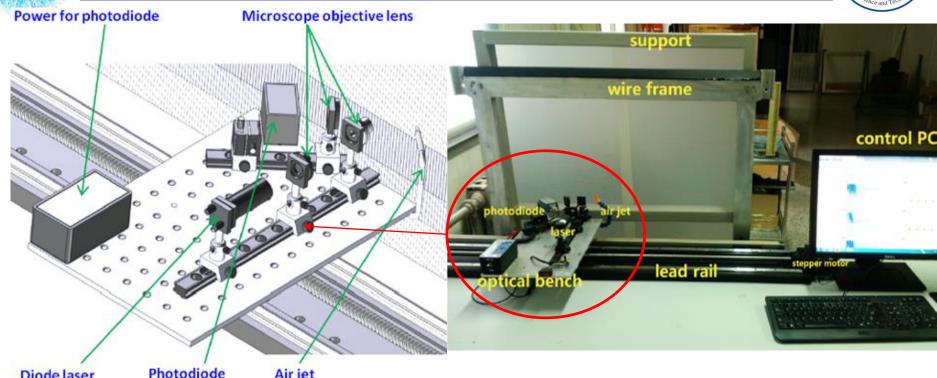
- Pure construction project, little or no engineering and design left
- Reduce ion leaking between inner and outer sector
- First prototype has been made at SDU

Wire mounting prototype

Wire frame


• Wire winding machine

Three wire frames per sector -- Anode, Ground, Gate


Precise wire tension, pitch and height -- Gain uniformity, Active area

	Tension	Toleranc e	Compositio n	Pitch (mm)	Diam.(µ m)
Anode wire	0.5N	0.03N	Au-plated W	4	20
Ground plane	1.2N	0.06N	Au-plated Be–Cu	1	75
Gated grid	1.2N	0.06N	Au-plated Be–Cu	1	75

Wire tension, pitch and height

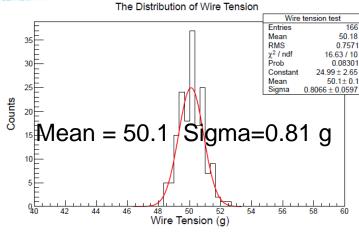
Determine wire tension by optically measuring the vibration frequency:

- -> laser scan on each wire
- -> synchronized with gas jet
- -> get voltage fluctuation transformed of laser absorption via photodiode
- -> get fundamental oscillator frequency via FFT algorithm

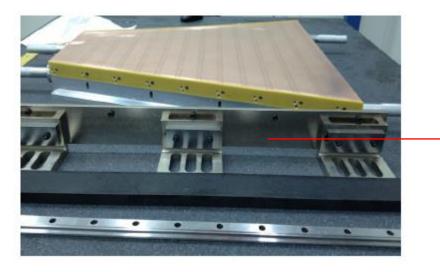
Air jet

-> calculate tension

Wire pitch is obtained simultaneously.


Diode laser

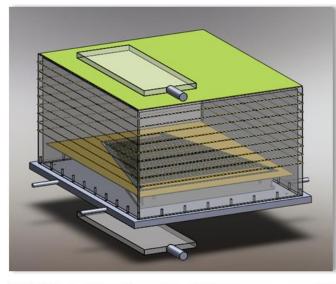
STAR



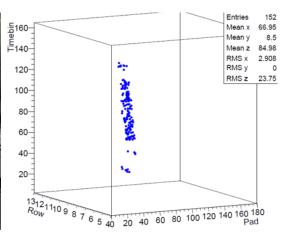

Wire tension, pitch and height

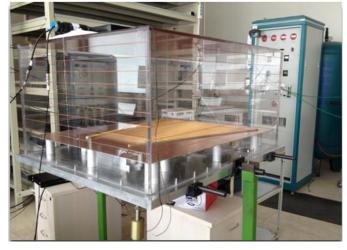
<6% precision request

Wire pitch is at the same level as previous TPC measurement (~7µm)

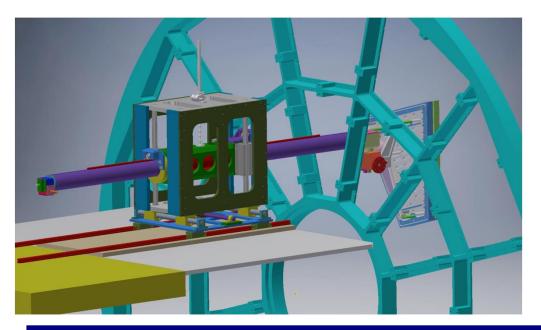

Wire combs:

Fix wire pitch, \sim 3.5µm precision Fix wire height, \sim 20µm precision

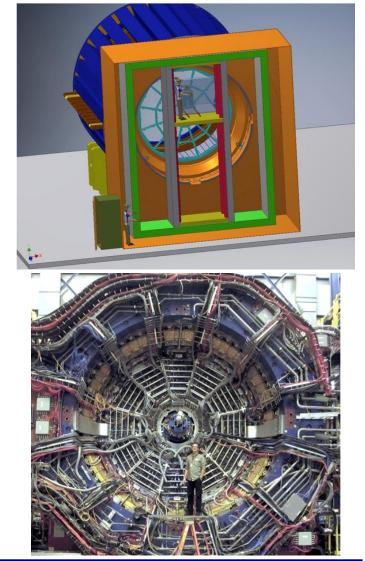



Layout of the test chamber with sector and trigger

- A testing system has been built
- DAQ similar to current STAR TPC DAQ
- Cosmic-ray track can be reconstructed
- Testing based on ⁵⁵Fe and X-ray source has been processing for gain scan
- More test results coming soon!



Insertion tooling and installation



Insertion tooling needed for installation and for replacement of two outer bad sectors

Designed by Rahul Sharma, Ralph Brown and much input from LBNL, CERN

Clean room covers the installation area

Time schedule

Installation schedule

- End Run-17 (6/1/2017)
 - 8 months installation period
 - Verify & test installation tooling
 - Exchange one outer sector, and possibly one new inner sector module with electronics
- Run 18 Start 2/1/2018 End 5/31/2018 (13 weeks)
 - Long installation (shutdown) period needed
 - Aim for start of Run-19 in March 2019

Production schedule

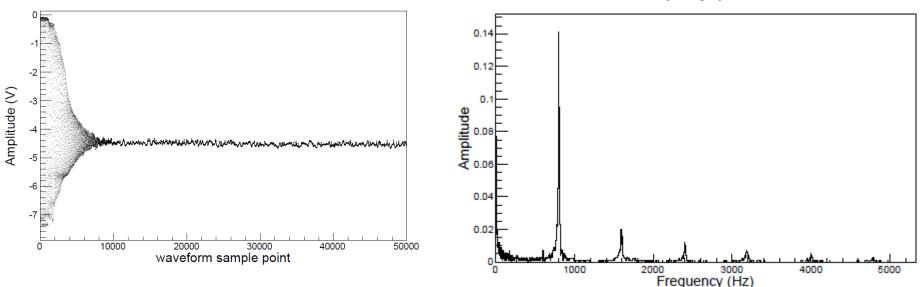
- Start from Jan.2017 to Apr.2018
 - 16 months mass production period
 - 28 sectors (24+4)
 - Mass production procedure determined by 2016
 - Two prototypes produced and tested by 2016

Summary

- iTPC upgrade will improve many STAR physics results both in statistics and acceptance coverage
- Improved performance from inner TPC will reduce many physics analysis uncertainties
- A complete construction plan is ready, aiming fully installation before Run-19 in March 2019
- First inner sector prototype has been produced with qualified wire tension, pitch and height
- Detail testing for the first prototype is ongoing

• Thanks to all iTPC group members

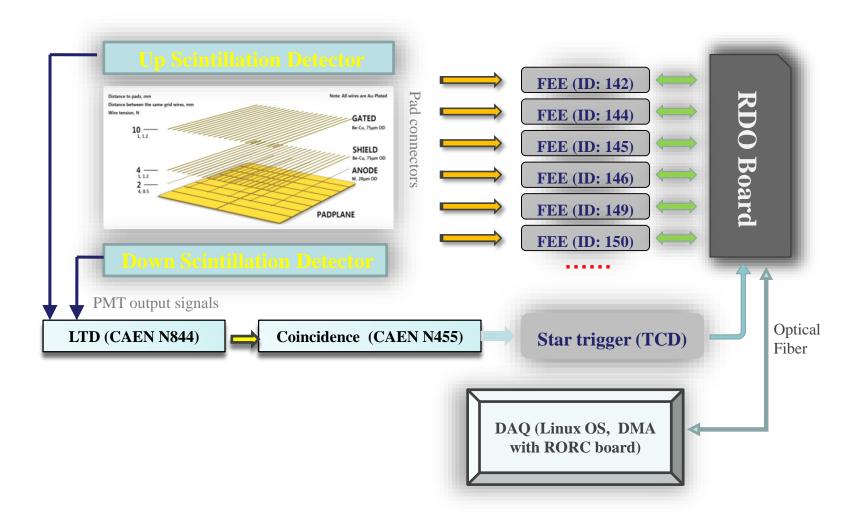
Thank you!


fundamental oscillator frequency via FFT

The frequency spectrum

algorithm (highest peak)

voltage fluctuation transformed of laser absorption via photodiode


The time waveform of digitalized signal

Testing system layout

TPC parameters

Basic p	parameters	for	the	STAR	TPC	and	its	associated
hardwa	re							

Item	Dimension	Comment		
Length of the TPC	420 cm	Two halves,		
		210 cm long		
Outer diameter of the drift volume	400 cm	200 cm radius		
Inner diameter of the drift volume	100 cm	50 cm radius		
Distance: cathode to ground plane	209.3 cm	Each side		
Cathode	400 cm diameter	At the center of the TPC		
Cathode potential	28 kV	Typical		
Drift gas	P10	10% methane, 90% argon		
Pressure	Atmospheric	Regulated at		
	+2 mbar	2 mbar above atm.		
Drift velocity	5.45 cm/µs	Typical		
Transverse diffusion (σ)	$230 \ \mu m/\sqrt{cm}$	140 V/cm & 0.5 T		
Longitudinal diffusion (σ)	$360 \ \mu m/\sqrt{cm}$	140 V/cm		
Number of anode sectors	24	12 per end		
Number of pads	136 608			
Signal to noise ratio	20:1			
Electronics shaping time	180 ns	FWHM		
Signal dynamic range	10 bits			
Sampling rate	9.4 MHz			
Sampling depth	512 time buckets	380 time buckets typical		
Magnetic field	0, ±0.25 T, ±0.5 T	Solenoidal		