Non-binomial efficiency corrections, plus comments on multi-particle
correlations

Adam Bzdak
AGH University of Science and Technology, Krakow

Efficiency correction is important
STAR (thanks to X. Luo)

If efficiency is driven by binomial with p (or ϵ)

true	measured
$\left(\frac{N!}{(N-i)!}\right)$	$=\frac{1}{p^{i}}\left\langle\frac{n!}{(n-i)!}\right)$
F_{i}	$=\frac{1}{p^{i}} f_{i}$

So we express true cumulants through factorial moments F_{i}, which are known from the above equality (f_{i} is measured, p is known)

AB, V. Koch,
PRC 86 (2012) 044904; PRC 91 (2015) 027901

Binomial efficiency

$$
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)\left[1+c_{2}\left(y_{1}, y_{2}\right)\right]
$$

two-particle density
single-particle densities

reduced correlation function

$$
B(n, N)=\frac{N!}{n!(N-n)!}[p]^{n}[1-p]^{N-n}
$$

Binomial efficiency modifies only single particle distribution, it does not influence physics

Non-binomial efficiency

$$
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)\left[1+c_{2}\left(y_{1}, y_{2}\right)\right]
$$

non-binomial influences the correlation function!

$\frac{\rho_{2}\left(y_{1}, y_{2}\right)}{\rho\left(y_{1}\right) \rho\left(y_{2}\right)}$
is not efficiency independent (unless we have binomial)

$$
\rho_{3}\left(y_{1}, y_{2}, y_{3}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right) \rho\left(y_{3}\right)\left[1+c_{2}\left(y_{1}, y_{2}\right)+\cdots+c_{3}\left(y_{1}, y_{2}, y_{3}\right)\right]
$$

STAR efficiencies at 19.6 GeV and 7.7 GeV
X. Luo [STAR Collaboration] arXiv:1503.02558 [nucl-ex]].

We see non-binomial efficiency.

If ϵ depends on N the whole method brakes down.

$$
f_{i}=\sum_{N} \underline{\epsilon^{i}(N)} P(N) \frac{N!}{(N-i)!}
$$

Let's test it. Suppose that

$$
\begin{aligned}
P(N) & =\frac{\langle N\rangle^{N}}{N!} e^{-\langle N\rangle} \\
\epsilon(N) & =\epsilon_{0}+\epsilon^{\prime}(N-\langle N\rangle)
\end{aligned}
$$

with $\langle N\rangle=40, \epsilon_{0}=0.65$ and plot K_{n} / K_{2} as a function of ϵ^{\prime}. We calculate exact f_{i} and correct using constant efficiency $F_{i}=f_{i} / \epsilon_{0}^{i}$.

We obtain

AB, R.Holzmann, V.Koch arXiv:1603.09057

Large corrections for small ϵ^{\prime}

Another example of non-binomial distribution AB, R.Holzmann, V.Koch Beta-binomial distribution (we return 2 balls) arXiv:1603.09057

Beta-binomial	$\alpha=30$	$\alpha=60$	$\alpha=150$	$\alpha=1000$
K_{3} / K_{2}	1.28	1.24	1.13	1.02
K_{4} / K_{2}	0.82	1.45	1.35	1.07
K_{5} / K_{2}	-1.11	1.15	1.63	1.16
K_{6} / K_{2}	5.71	-0.44	1.80	1.32

We need to do proper unfolding
For example:

$$
p(n)=\sum_{N=n}^{\infty} P(N) \frac{N!}{n!(N-n)!} \epsilon^{n}(1-\epsilon)^{N-n}
$$

$$
\left(\begin{array}{c}
p(0) \\
p(1) \\
p(2) \\
p(3) \\
p(4)
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 1-\epsilon & (1-\epsilon)^{2} & (1-\epsilon)^{3} & (1-\epsilon)^{4} \\
0 & \epsilon & 2 \epsilon(1-\epsilon) & 3 \epsilon(1-\epsilon)^{2} & 4 \epsilon(1-\epsilon)^{3} \\
0 & 0 & \epsilon^{2} & 3 \epsilon^{2}(1-\epsilon) & 6 \epsilon^{2}(1-\epsilon)^{2} \\
0 & 0 & 0 & \epsilon^{3} & 4 \epsilon^{3}(1-\epsilon) \\
0 & 0 & 0 & 0 & \epsilon^{4}
\end{array}\right)\left(\begin{array}{c}
P(0) \\
P(1) \\
P(2) \\
P(3) \\
P(4)
\end{array}\right)
$$

We can easily use $\epsilon(N)$, matrix is much more complicated but it is not a big deal.

In general

$$
p(n)=\sum_{N=n} P(N) B(n ; N)
$$

The method works for $\epsilon(N)$

It works very well, statistical errors are under control

Take-home message

- Non-binomial efficiency is (most likely) important
- Technique based on correcting factorial moments is not good enough
- Proper unfolding is warranted - see R. Holzmann's talk

Multi-particle correlation functions

$$
\rho_{2}\left(y_{1}, y_{2}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right)\left[1+c_{2}\left(y_{1}, y_{2}\right)\right]
$$

$\langle N(N-1)\rangle=\langle N\rangle^{2}+\langle N\rangle^{2} c_{2}$

$$
c_{2}=\frac{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) c_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) d y_{1} d y_{2}}
$$

coupling
and the second order cumulant

$$
K_{2}=\langle N\rangle+\langle N\rangle^{2} c_{2}
$$

In the same way

$$
\rho_{3}\left(y_{1}, y_{2}, y_{3}\right)=\rho\left(y_{1}\right) \rho\left(y_{2}\right) \rho\left(y_{3}\right)\left[1+c_{2}\left(y_{1}, y_{2}\right)+\cdots+c_{3}\left(y_{1}, y_{2}, y_{3}\right)\right]
$$

$$
\begin{aligned}
F_{3} & =\langle N(N-1)(N-2)\rangle=\langle N\rangle^{3}+3\langle N\rangle^{3} c_{2}+\langle N\rangle^{3} c_{3} \\
c_{3} & =\frac{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) \rho\left(y_{3}\right) c_{3}\left(y_{1}, y_{2}, y_{3}\right) d y_{1} d y_{2} d y_{3}}{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) \rho\left(y_{3}\right) d y_{1} d y_{2} d y_{3}}
\end{aligned}
$$

coupling

and the third order cumulant

$$
K_{3}=\langle N\rangle+3\langle N\rangle^{2} c_{2}+\langle N\rangle^{3} C_{3}
$$

Finally we obtain

$$
c_{2}=\frac{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) c_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) d y_{1} d y_{2}}
$$

$$
\begin{aligned}
& K_{2}=\langle N\rangle+\langle N\rangle^{2} c_{2} \\
& K_{3}=\langle N\rangle+3\langle N\rangle^{2} c_{2}+\langle N\rangle^{3} c_{3} \\
& K_{4}=\langle N\rangle+7\langle N\rangle^{2} c_{2}+6\langle N\rangle^{3} c_{3}+\langle N\rangle^{4} c_{4}
\end{aligned}
$$

Let's fix the rapidity bin:

- K_{i} scales like $\langle N\rangle^{i}$ if correlation function do not depend on $\langle N\rangle$.
- Comparing different centralities is tricky. Physics ($c_{2,3,4}$) could be the same but K_{4} / K_{2} can be different because of changing $\langle N\rangle$.
- Same with energy!
- If $\langle N\rangle<1$ (anti-protons at low energy) higher order correlation functions are getting less visible, $K_{i} \sim\langle N\rangle$, and the ratios $\rightarrow 1$.

Anti-protons and protons are different at low energies

$\left\langle N_{\text {proton }}\right\rangle \sim 40, \quad\left\langle N_{\text {anti-proton }}\right\rangle \sim 0.25$

$$
\begin{aligned}
& K_{2}=\langle N\rangle+\langle N\rangle^{2} c_{2} \quad c_{2}=\frac{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) c_{2}\left(y_{1}, y_{2}\right) d y_{1} d y_{2}}{\int \rho\left(y_{1}\right) \rho\left(y_{2}\right) d y_{1} d y_{2}} \\
& K_{3}=\langle N\rangle+3\langle N\rangle^{2} c_{2}+\langle N\rangle^{3} c_{3} \\
& K_{4}=\langle N\rangle+7\langle N\rangle^{2} c_{2}+6\langle N\rangle^{3} c_{3}+\langle N\rangle^{4} c_{4}
\end{aligned}
$$

Now let's change the rapidity bin, Δy.
Assume that $c_{n}\left(y_{1}, \ldots, y_{n}\right)$ changes slowly within measured rapidity bin. In this case c_{n} does not depend on Δy.
$\langle N\rangle \sim \Delta y$ and $K_{2} \sim \Delta y^{2}, K_{4} \sim \Delta y^{4}$.
Consequently $K_{4} / K_{2} \sim \Delta y^{2}$

STAR data on Δy dependence at 7.7 GeV

Any initial state effect (i.e., correlation long-range in rapidity, e.g., volume fluctuation) can give this.

This plot only proves that correlation between particle is not very short-range in rapidity.

We extracted multi-particle correlation couplings

Physics rather flat as a function of $N_{\text {part }}$
$c_{2}>c_{3}>c_{4}$ (what do we expect for the critical point?)
... and for smaller $N_{\text {part }}$

Non-trivial dependence for smaller $N_{\text {part }}$. Something changes around $N_{\text {part }}=100$.

Take-home message

- Cumulants ratios are tricky to interpret, they mix correlations function of different order and ratios can depend on average number of particles.
- Multi-particle correlation couplings are much cleaner.
- In data $c_{2}>c_{3}>c_{4}$ at 7.7 GeV . What do we expect for the critical point?

Conclusions

Non-binomial efficiency is a serious problem.
We need to do proper unfolding.

Studying multi-particle correlation functions is much cleaner.

