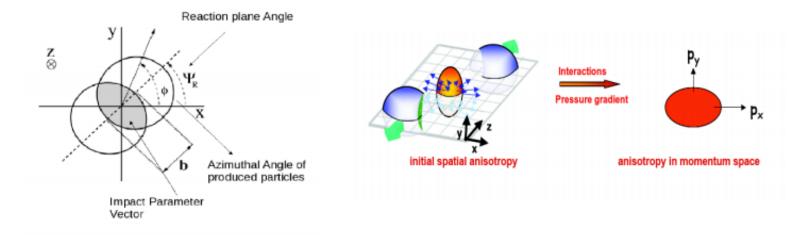


Insight from the elliptic flow of open charm mesons

Based on arXiv:1603.02700


Roli Esha

in collaboration with Md. Nasim and Huan Z. Huang University of California – Los Angeles

Outline

- Introduction
- The Quark Coalescence Model
- Results
 - Centrality bias
 - \circ Elliptic flow of D^0 and D_S at RHIC
 - \circ Elliptic flow of D^0 and D_S at LHC
 - Effect of specific viscosity
- Summary

Elliptic flow

The particle azimuthal distribution with respect to the reaction plane is given by

$$\frac{dN}{d\phi} = \frac{1}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n\left(\phi - \Psi_R\right)\right] \right) \qquad \phi = \tan^{-1} \left(\frac{p_y}{p_x}\right)$$

Elliptic flow is given by the second harmonic : $v_2 = \langle \cos[2(\phi - \Psi_R)] \rangle$

Introduction

- *Heavy quarks an important probe for QGP*
- Produced in early stages of relativistic heavy ion collisions through hard partonic scattering
- *Probability of thermal production is small at RHIC energies*

In this talk, we will discuss what we can learn from the elliptic flow of open charm mesons using A Multi Phase Transport model with quark coalescence as the mechanism for hadronization.

Establishing the model

A Multi Phase Transport (AMPT) model Coalescence prescription

AMPT model

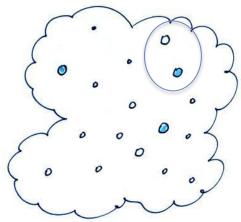
A + B

┛

HIJING

energy in excited strings and minijet partons

ZPC (Zhang's Parton Cascade) till parton freezeout


ART (A Relativistic Transport) model for hadrons

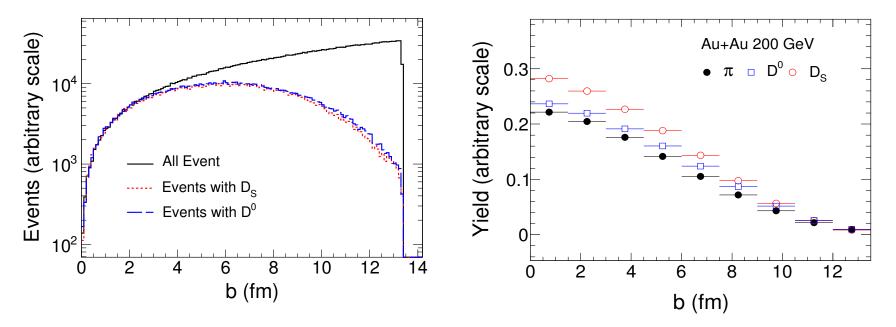
- *Hybrid transport model*
- Work with the **String Melting** version
- Initial conditions from HIJING
- *Strings are converted to soft partons*
- Scattering among partons is modeled by ZPC
- *Hadronization of heavy quarks is not implemented*

Coalescence prescription

$$\rho^{w}(\vec{r},\vec{k}) = \int \psi\left(\vec{r} + \frac{\vec{R}}{2}\right) \psi^{*}\left(\vec{r} - \frac{\vec{R}}{2}\right) \exp(-i\vec{k}\cdot\vec{r}) d^{3}\vec{R}$$

• The probability of producing a hadron from the soup of partons is determined by the overlap of phase space distribution of partons at freeze out with the parton Wigner phase space function inside the hadron

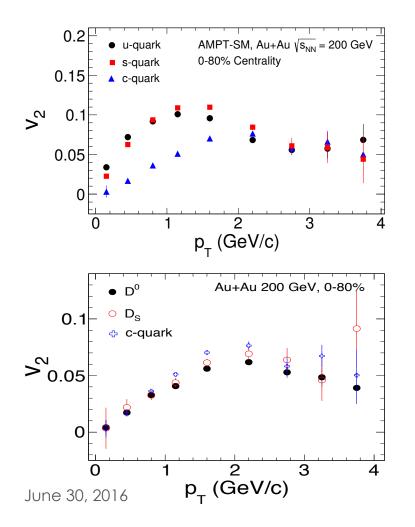
- Assumptions :
 - o correlation between coalescing parton is weak
 - Binding energy of the formed hadron can be neglected


Phys. Rev. C 73, 044903 (2006) Phys. Lett. B 595, 202 (2004)

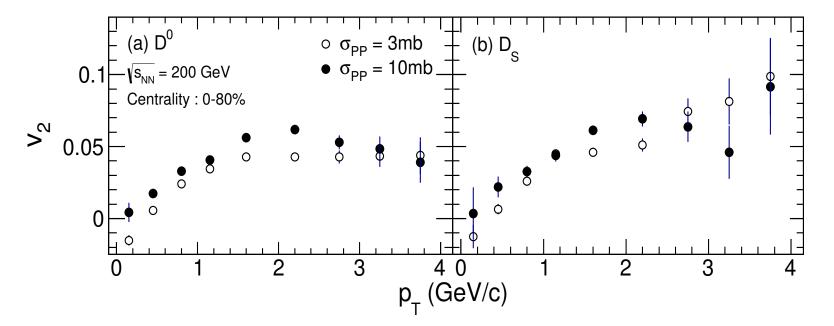
Results

$\bullet \quad \bullet \quad \bullet$

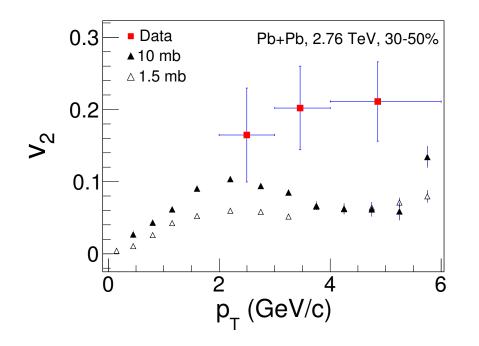
- 1. *Centrality bias*
- 2. Elliptic flow of D^0 and D_s at RHIC
- 3. Elliptic flow of D^0 and D_s at LHC
- 4. Effect of shear viscosity


Centrality Bias

Events with at least one open charm and production of open charm is biased towards central events as compared to light hadrons


One should be careful when comparing elliptic flow of open charm mesons with charged hadrons for wide centrality range June 30, 2016

Elliptic flow at RHIC

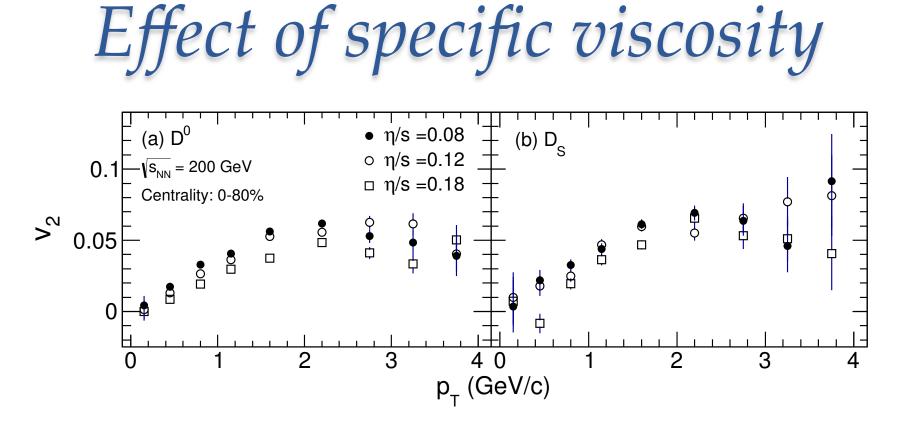

- Interactions between partons in AMPT-SM gives rise to substantial elliptic flow
- *Typical plots for partonic interaction cross-section of 10 mb.*
- Elliptic flow of up (u) and strange (s) quarks is greater than charm (c) in AMPT-SM model at low transverse momentum
- Magnitude of elliptic flow of D mesons similar to charm quark – NCQ scaling may not hold

• Elliptic flow decreases with decrease in parton parton interaction crosssection, which is similar as observed for charged hadron

Elliptic flow at LHC

- Elliptic flow of charged hadrons is described by partonic interaction cross-section of 1.5 mb for $p_T < 2$ GeV/c
- Model calculations underpredict data for D meson for $p_T > 2 \text{ GeV/c}$
- Looking forward to results from ALICE upgrades for low p_T

In the string melting version of AMPT, parton scattering cross-section is given by :

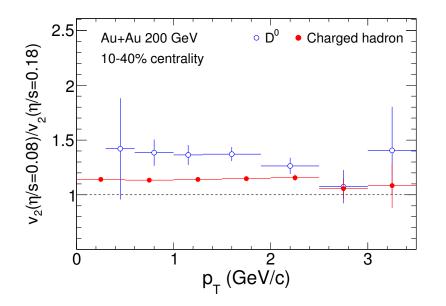

$$\sigma_{PP} \approx \frac{9\pi\alpha^2}{2\mu^2}$$

For a massless system of quarks and gluons at temperature T, specific viscosity is estimated to be

$$\frac{\eta_s}{s} \approx \frac{3\pi}{40\alpha^2} \frac{1}{\left(9 + \frac{\mu^2}{T^2}\right) \log\left(\frac{18 + \mu^2/T^2}{\mu^2/T^2}\right) - 18}$$

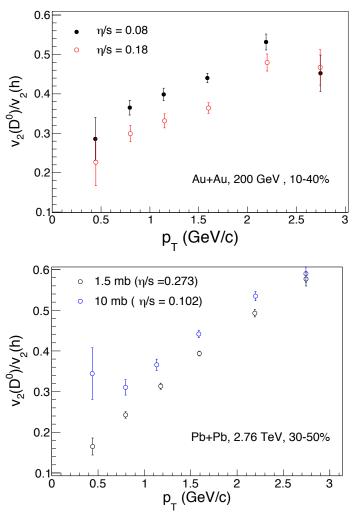
Tuning α *and* μ *, we can get different values of* η_s */s for* T = 378 *MeV* (*RHIC*)

η_s/s	$\sigma_{PP}(in \ mb)$	α	µ (in fm⁻¹)	Comment
0.08	10	0.47	1.77	Default
0.12	10	0.33	1.24	Tuned
0.18	10	0.23	0.88	Tuned
0.18	3	0.47	3.22	Default



• *Magnitude of elliptic flow decrease with increase in specific viscosity*

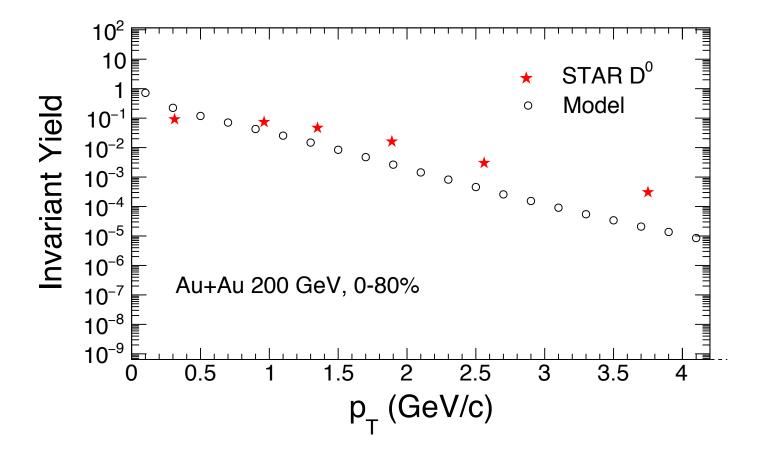
• Though elliptic flow is generated by partonic interactions in the AMPT-SM model, its magnitude is sensitive to specific viscosity


June 30, 2016

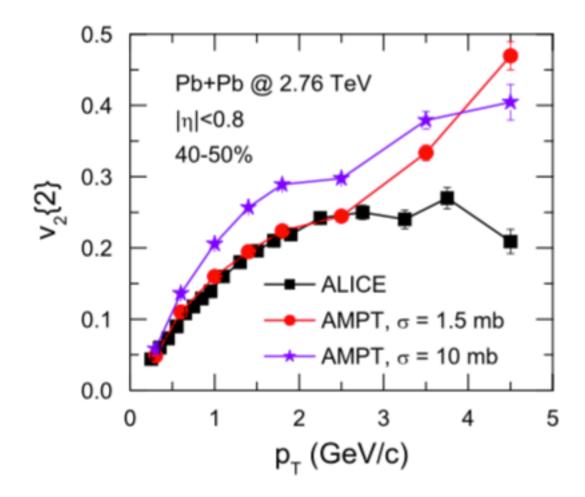
As a sensitive probe

- Change in v_2 is ~15% for hadrons and ~35% for D^0 for $p_T < 2 \text{ GeV/c}$
- We find the ratio to be independent of centrality and energy in our model
- Elliptic flow of open charm meson is more sensitive to viscous properties of QGP as compared to light hadrons

As a sensitive probe


- The ratio of v₂ of D⁰ to v₂ of charged hadrons is independent of analysis technique used to obtain elliptic flow
- Can be calculated in data and compared to model studies to constrain specific viscosity of the medium

Conclusion


- Estimated the elliptic flow of open charm mesons at RHIC and LHC energies using coalescence prescription within the framework of AMPT model
- Demonstrated that their production is heavily biased towards central collisions
- Presented a systematic study on the effect of specific viscosity on elliptic flow within the transport model approach
- Look forward to high statistics measurements at RHIC and LHC to compare our results

Thank you !

Invariant yield

AMPT at LHC

