

D^o Meson Production in Heavy Ion Collisions in CMS experiment

Jing Wang on behalf of the CMS Collaboration

The 16th International Conference on Strangeness in Quark Matter 27 June - 1 July 2016 Berkeley (United States)

Why studying heavy flavors in HI?

E-AE

(medium)

Heavy quarks are produced via initial hard scatterings

Carry information about the system at early stage → Good probe of QGP

the probe heavy quarks interact with the medium

In-medium energy loss

- Two energy loss mechanisms: Collisional + Radiative
- · Flavor-dependent
 - Dead cone effect [1] (Radiative energy loss is suppressed at small angels)

$$dP = \frac{\alpha_{\rm s} C_F}{\pi} \frac{d\omega}{\omega} \frac{k_{\perp}^2 dk_{\perp}^2}{(k_{\perp}^2 + \omega^2 \theta_0^2)^2}, \qquad \theta_0 \equiv \frac{M}{E}$$

- Expect: $\Delta E^{\text{light}} > \Delta E^{\text{c}} > \Delta E^{\text{b}}$
- Nuclear modification factor:
- $\cdot \mathbf{R}^{\text{light}}_{AA} < \mathbf{R}^{\text{D}}_{AA} < \mathbf{R}^{\text{B}}_{AA}$
- Dead cone effect is expected to be important at low p_T

[1] Y.L. Dokshitzer, D. E. Kharzeev, Phys. Lett. B **519** (2001) 199.

E-AE

0000 + AE

PbPb @ 2.76 TeV

- Dataset: MB events
- p_T: 2-40 GeV/c
- pp reference: data-extrapolated and FONLL

Run II 5.02 TeV

- p_T: 2-100 GeV/c
- · pp reference: direct data

Measurements reaching very high p_T for the first time!

CMS-PAS-HIN-15-005

D^o meson production at 5.02 TeV

CMS-PAS-HIN-16-001 First Run II heavy flavor analysis

- $c \rightarrow D^0$: O(50%) of c cross-section
- D⁰→Kπ: 3.93 ± 0.04%
- $D^{0} c\tau = 122.9 \mu m$

D⁰ measurements in pp and PbPb

$D^0 \rightarrow K\pi$ in pp and PbPb collisions at 5.02TeV, Centrality 0-10% and 0-100%, lyl<1

Datasets

• Low pT (< 20 GeV/c)

MinBias Events (pp: 2 billions events; PbPb: 150 million events)

 High pT (> 20 GeV/c) Events triggered by dedicated HLT D⁰ filters to enhance the statistics at very high pT

High-Level-Trigger (HLT) D⁰ triggers

Κ

Level-1 (L1) jet algorithm with online background subtraction

Track seed p_T cut applied:

- $p_T > 2 \text{ GeV for pp}$
- $p_T > 8 \text{ GeV for PbPb}$

- D⁰ online reconstruction
- loose selection based on D⁰ vertex displacement

High-Level-Trigger (HLT) D^o triggers

D⁰ measurements in pp and PbPb

$D^0 \rightarrow K\pi$ in pp and PbPb collisions at 5.02TeV, Centrality 0-10% and 0-100%, lyl<1

Analysis strategy

- Primary vertex reconstruction several tracks
- D^o candidates (vertex) reconstruction pairing two tracks + kinematic fitter
- D^o candidates selection (TMVA) decay topology
 - Pointing angel (α) < ~0.12
 - 3D decay length (d₀) normalized by its error $> \sim 4$
 - Secondary vertex probability $> \sim 0.1$
- Raw yields extraction Invariant mass
- Cross-sections

Invariant mass spectra in pp (5.02 TeV)

Raw yields extraction

Mass distributions fitted by

- Double gaussian (Signal)
- 3rd order polynomial (Combinatorial)
- Single gaussian (K-π swapped)

No PID *Candidates with wrong mass assignment*

Obtain cross-section from raw yields

Raw yields → Cross-sections

Obtain cross-section from raw yields

Raw yields → Cross-sections

Raw yields → Cross-sections

0

0.01 0.02 0.03 0.04 0.05 0.06 0.07

 D^0 DCA (cm)

Consistent with that from FONLL convoluted with MC efficiency

p_T-differential cross-section in pp

- The first measurement of D⁰ cross-section in pp collisions at 5.02 TeV
- p_T range covers from 2 to 100 GeV/c in lyl < 1
- Consistent with the upper bound of FONLL predictions [1]

[1] M. Cacciari, M. Greco, P. Nason, "The pT Spectrum in Heavy-Flavour Hadroproduction", JHEP 007, 9805 (1998)

Raw yields extraction

5.02 TeV, 0-100%

Systematic uncertainties summary

Signal extraction systematics ~5%

 Varying signal and background fit functions

D meson selection $\sim 13\%$

- Comparing data and MC driven efficiencies of the different cut selections
- Systematics on trigger efficiency
- Tracking efficiency systematic (evaluated by 2 and 4 prongs D^o decays)

B-feed down uncertainty ~8%

 Obtained by comparing f_{prompt} estimation with alternative method based on decay length and FONLL predictions

PbPb, Centrality 0-100%

lyl < 1, Centrality **0-100%**

- Strong suppression at pT 5-8 GeV/c
- Less suppression for low and high pT

CMS-PAS-HIN-16-001

Iyl < 1, Centrality **0-100%**

- Comparison with charged hadrons [1]
 - Less suppression at low pT
 - Similar suppression at high pT

[1] CMS-PAS-HIN-15-015

CMS-PAS-HIN-16-001

CMS-PAS-HIN-16-001

lyl < 1, Centrality **0-100%**

- Comparison with charged hadrons [1]
 - Less suppression at low pT
 - Similar suppression at high pT
- Comparison with theoretical predictions
 - S. Cao et al. [2] (Improved Langevin eq, Linearized Boltzmann)
 - **M. Djordjevic** [3] (pQCD calculations in a finite size optically thin dynamical QCD medium)

[1] CMS-PAS-HIN-15-015

[2] arXiv:1605.06447v1.

[3] Phys. Rev. C 92 (Aug, 2015) 024918

Centrality 0-100%

Centrality 0-10%

Iyl < 1, Centrality **0-10%**

- Comparison with charged hadrons [1]
 - Similar behavior with 0-100%

CMS-PAS-HIN-16-001

[1] CMS-PAS-HIN-15-015

CMS-PAS-HIN-16-001

[1] CMS-PAS-HIN-15-018

[2] arXiv:1605.06447v1.

Iyl < 1, Centrality **0-10%**

- Comparison with charged hadrons [1]
 - Similar behavior with 0-100%
- Comparison with theoretical predictions
 - S. Cao et al. [2] (Improved Langevin eq, Linearized Boltzmann)
 - **M. Djordjevic** [3] (pQCD calculations in a finite size optically thin dynamical QCD medium)
 - **CUJET3.0 [4]** (jet quenching model based on DGLV opacity expansion theory)
 - **PHSD [5] (***Parton-Hadron-String Dynamics transport approach***)**
 - I. Vitev [6] (jet propagation in matter, soft-collinear effective theory with Glauber gluons (SCETG))

[4] JHEP **02** (2016) 169

[5] Phys. Rev. C 93 (Mar, 2016) 034906

[3] Phys. Rev. C 92 (Aug, 2015) 024918 [6] Phys. Rev. D 93 (Apr, 2015) 074030

Summary

Conclusions

$D^{\scriptscriptstyle 0}$ and charged particle R_{AA} agree up to very high p_T

- Putting strong constraints on theoretical calculations
- Forcing theories to describe HF production in a much wider kinematic range where different processes dominate

Outlook

- D meson at very low pT
 - Down to ~1 GeV/c
 - The hadronization mechanisms and the cold medium properties
- D meson v_n measurements
 - Collective behavior
- B meson R_{AA}
 - Coming soon!

Back up

Thanks for your attention!

D⁰ measurements with CMS in Run I

PbPb @ 2.76 TeV

CMS-PAS-HIN-15-005

Runll: pp + PbPb @ 5.02 TeV

- Measurements reaching very high p_T (>100GeV/c) for the first time!
- PP reference directly from data

Comparison with CMS 2.76 TeV

PbPb 0-100%

Comparison with ALICE 5.02 TeV

PbPb 0-10%

Heavy flavor measurements with CMS

pp

PbPb 0-100%

PbPb 0-10%

High-Level-Trigger (HLT) D^o triggers

- 5.02 TeV pp collisions
- Extend to D⁰ high pT to 200 GeV/c

Triggers performance

PbPb

Systematics

Heavy flavor measurements with CMS

LHC Run I (2.76 PbPb + 5.02 pPb)

b-jet RAA in PbPb

B meson R_{pPb} in pPb

$J/\psi R_{AA}$ in PbPb

