Sequential Regeneration of Charmonia in Heavy-Ion Collisions

Xiaojian Du, Ralf Rapp
Cyclotron Institute, Texas A&M University

June 28th 2016
Strangeness in Quark Matter
Berkeley
Outline

1. Introduction
2. Quarkonium Transport Approach
3. Charmonia in pA/dA Collisions
 3.1 Fireball in pA/dA
 3.2 Revisiting Hadronic Dissociation Rates
 3.3 Comparing to pA/dA Data
4. ψ' in PbPb Collision
 4.1 Detailed Balance and Regeneration
 4.2 Comparing to PbPb Data at 2.76 TeV
5. Conclusion
1. Introduction

- Large Enhancement for ψ'
- Large Suppression for ψ'

![Graphs and plots showing results for R_{dAu} and R_{pPb}, with annotations for CMS PbPb & pp $\sqrt{s_{NN}} = 2.76$ TeV and ALICE, p-Pb $\sqrt{s_{NN}} = 5.02$ TeV, inclusive J/ψ, $\psi(2S) \rightarrow \mu^+\mu^-$.]

- Large Enhancement for ψ'
- Large Suppression for ψ'
2. Quarkonium Transport in Heavy-Ion Collisions

- **Rate Equation**
 \[
 \frac{dN_\psi}{dT} = - \Gamma_\psi \left(N_\psi - N_{\psi}^{eq} \right)
 \]

- **Transport coefficients**
 - Chemical relaxation rate \(\Gamma_\psi \)
 - Equilibrium limit \(N_{\psi}^{eq} \)

- **Inelastic Reactions**
 - **Hadronic dissociation:**
 - \(J/\psi + \pi \rightarrow D + \bar{D}^* \), \(\bar{D} + D^* \)
 - \(J/\psi + \rho \rightarrow D + \bar{D} \)
 - \(J/\psi + \rho \rightarrow D^* + \bar{D}^* \)
 - **QGP dissociation:**
 - \(J/\psi + q(g) \rightarrow c + \bar{c} + q(g) \)

- **Evolve rate equation over expanding fireball evolution in heavy-ion collisions**
3.1 Fireball in pA/dA collisions

QGP formation time:
- AuAu RHIC ~ 0.6 fm
- dAu RHIC ~ 0.9 fm
- pPb LHC ~ 0.9 fm
3.2 Hadronic Dissociation Rates for Charmonia

- SU(4) meson-exchange model \[\text{[Lin+Ko, PRC 62 (2000)]}\]

\[J/\psi + \rho \rightarrow D + \bar{D} \]
\[J/\psi + \rho \rightarrow D^* + \bar{D}^* \]
\[J/\psi + \pi \rightarrow D + \bar{D}^* , \bar{D} + D^* \]

- Contributions from 52 mesons (no baryon yet)

\[\Gamma_{\text{diss}}^{X+J/\psi}(T) = \int \frac{d^3 k}{(2\pi)^3} f_X(E_X(k); T) \sigma_{\text{in}}^{X+J/\psi}(s, s_{\text{thr}}) v_{\text{rel}} \]

- Rate scaled by geometric size from J/ψ to ψ'
3.2 Dissociation Rates for Charmonia

- Small hadronic rate for J/ψ
- Sizeble hadronic rate for ψ'

Du+Rapp, NPA 943 (2015)
3.3 Charmonia in dAu at RHIC

- For J/ψ, hadronic rate negligible
- For ψ', both QGP and hadronic rates relevant
3.3 Charmonia in pPb at LHC

ψ' much more suppressed than J/ψ due to hot medium
4.1 Charmonia in PbPb collision: Sequential regeneration

RAA time evolution

- Blastwave description for J/ψ and ψ':

$$ dN_{\text{reg}}^{\text{reg}} \over dp_t dp_t = N_0(b) m_t \int_0^k r dr K_1 \left(\frac{m c h \rho(r)}{T} \right) I_0 \left(\frac{p_t s h \rho(r)}{T} \right) $$

- $J/\psi \sim 200\text{MeV}$
- $\psi' \sim 160\text{MeV}$

- ψ' regenerated later than J/ψ

- Flow pushes ψ' to higher p_T
4.2 Sequential regeneration of charmonia and the ψ' puzzle

- Trend of sequential regeneration calculation consistent with data
5. Conclusion

- Revisited hadronic dissociation rates of charmonia, including more complete set of reactions

- Larger hadronic dissociation rate for ψ' generates larger suppression of ψ' than J/ψ in dA/pA collisions

- Sequential regeneration mechanism with large hadronic rate can qualitatively explain the enhanced ψ' over J/ψ double ratio in PbPb

Thanks!