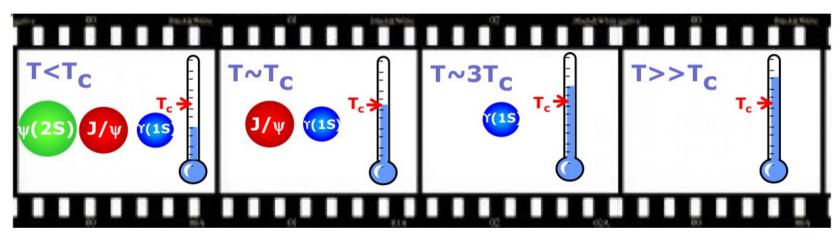
Charmonium production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV with ALICE

Biswarup Paul INFN Torino (Italy) On behalf of the ALICE Collaboration

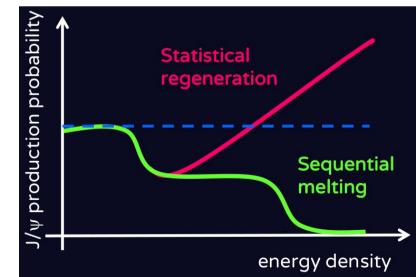
Strangeness in Quark Matter 2016, Berkeley, June 27th – July 1st 2016


- Introduction
- ALICE detector
- Analysis technique
- Inclusive $J/\psi R_{AA}$ at $\sqrt{s_{NN}} = 5.02$ TeV in Pb-Pb collisions versus centrality and transverse momentum

Dutline

- Using pp cross section at $\sqrt{s} = 5.02$ TeV as R_{AA} reference
- Comparison to the results at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$
- Comparison to the theoretical models
- The results are available in CERN-EP-2016-162 and are published in arXiv:1606.08197

Quarkonium in a hot medium


- → Quarkonium suppression:
 - Quarkonium states are expected to be dissociated in a hot medium by color screening.
 - Differences in the binding energies lead to a sequential melting of the states with increasing temperature (T. Matsui and H. Satz, PLB 178 (1986) 416).

→ Quarkonium (re)combination:

- Increasing the collision energy, the cc pair multiplicity increases.
- Enhanced quarkonium production via (re)combination at hadronization or during QGP stage.
 - (P. Braun-Muzinger, J. Stachel, PLB 490 (2000) 196,

R. Thews et al, Phys. Rev. C 63 (2001) 054905)

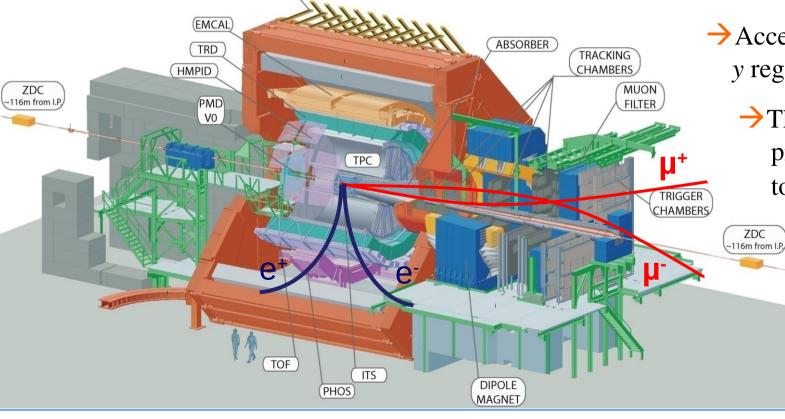
Quarkonium measurement in ALICE

 \rightarrow Quarkonium in ALICE can be measured in two ways:

Central Barrel: (|y| < 0.9)

 $J/\psi \rightarrow e^+e^-$

Electrons tracked using ITS and TPC Particle identification: TPC (+TOF)

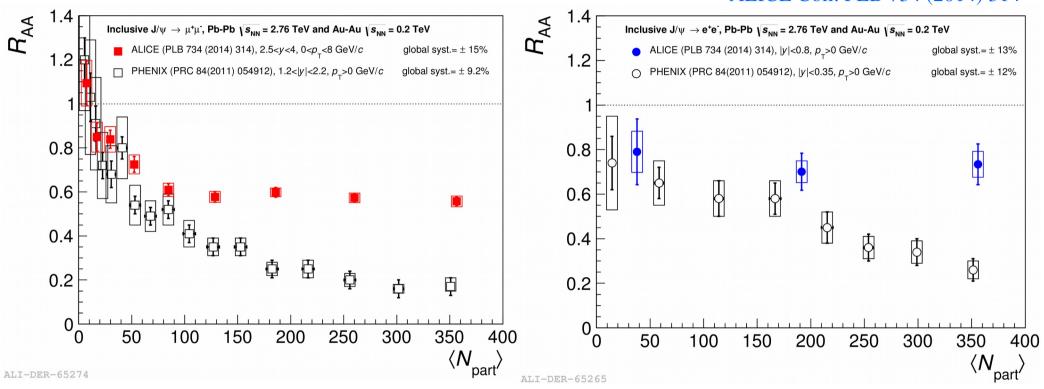

ACORDE

Forward muon arm: $J/\psi \to \mu^+\mu^-$ (2.5 < y < 4)

Muons identified and tracked in the muon spectrometer

Acceptance coverage in both y regions down to zero $p_{\rm T}$

→ The ALICE results presented in this talk refer to inclusive J/ψ .

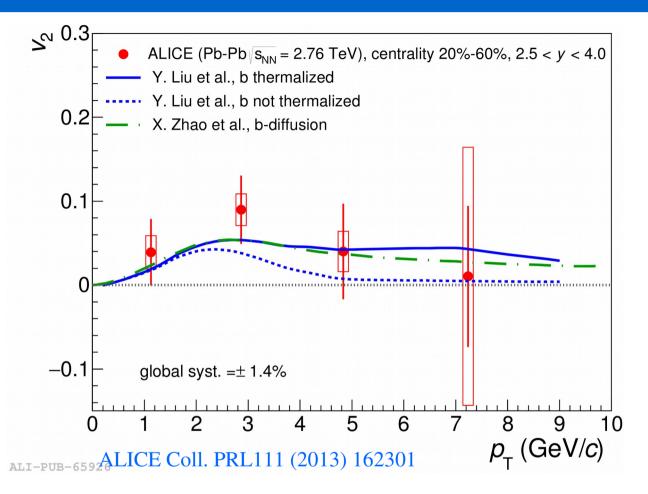


ALICE J/ ψ Run-1 results in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

$J/\psi R_{AA}$ vs centrality: ALICE vs PHENIX

→ Centrality dependence of the J/ ψ inclusive R_{AA} studied by ALICE at both central and forward rapidities down to zero p_T .

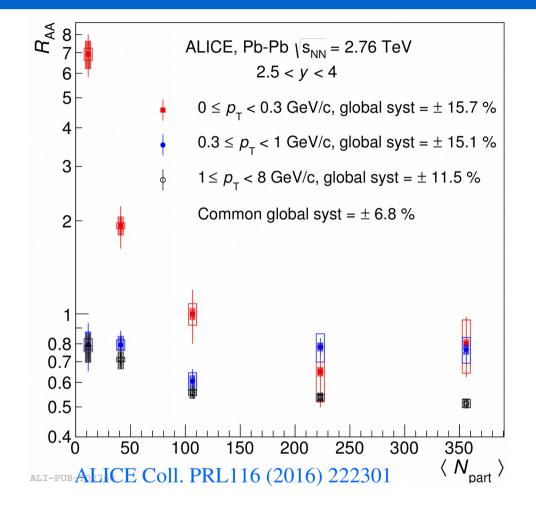
\rightarrow ALICE results:


clear J/ ψ suppression with almost no centrality dependence for $N_{part} > 100$.

→ Comparison with PHENIX:

ALICE results show weaker centrality dependence and smaller suppression for central events, behaviour expected in a (re)combination scenario.

J/ψ flow



- → The contribution of J/ ψ from (re)combination should lead to a significant elliptic flow signal at LHC energy.
- → Hint for J/ ψ flow at the LHC while $v_2 \sim 0$ at RHIC [PRL. 111, 052301 (2013)] (even if with large uncertainties).
- \rightarrow Qualitative agreement with transport models including regeneration.

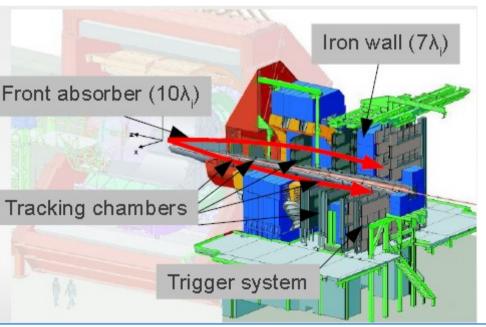
Low $p_{\rm T} J/\psi$

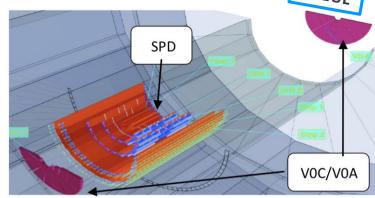
- \rightarrow Excess of J/ ψ at very low p_T observed in peripheral Pb-Pb collisions.
- → Photoproduction of J/ ψ in Pb-Pb collisions with b < 2R was proposed to be at the origin of this excess. The cut $p_T > 0.3$ GeV/*c* removes ~75% of photoproduced J/ ψ .

ALICE J/ ψ Run-2 results in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

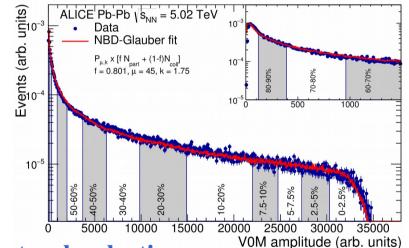
CERN-EP-2016-162 arXiv:1606.08197

Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$


ALICE


- → Results from 2015 data set, based on dimuon triggered events
 - Integrated luminosity ~ 225 μ b⁻¹
- → Event selection:

Rejection of beam gas and electromagnetic interactions (V0 and ZDC) SPD used for vertex determination


→ Centrality selection:

Estimate based on a Glauber model fit of the V0 amplitude

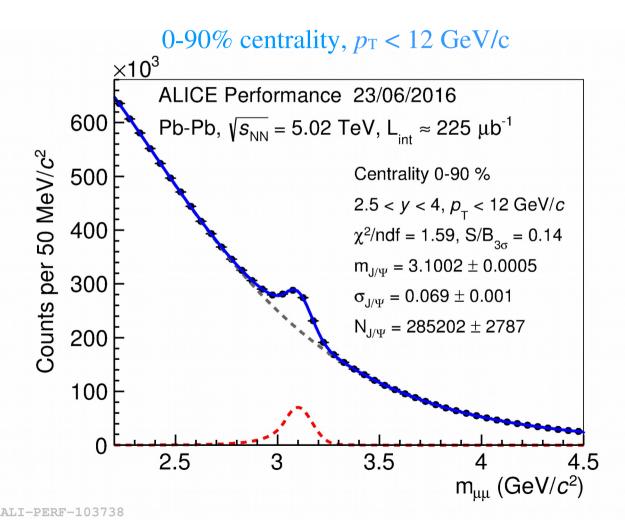
PRL. 116, 222302 (2016)

→ Muon track selection:

- Muon trigger matching
- $-4 < \eta_{\mu} < -2.5$
- $17.6 < R_{abs} < 89.5 \text{ cm}$

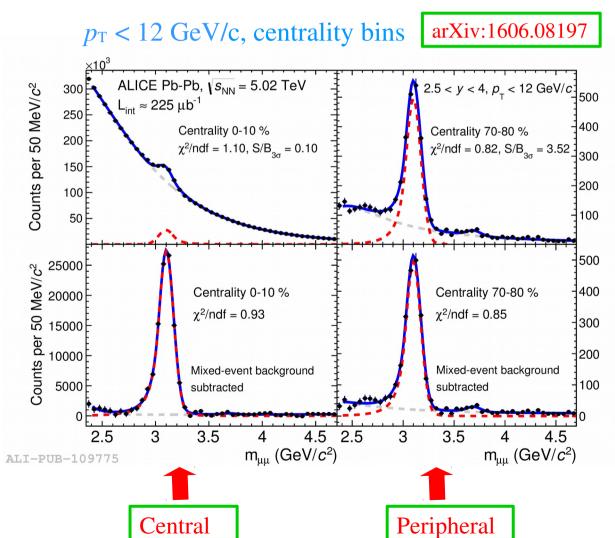
 $(R_{abs} = track position at the absorber end)$

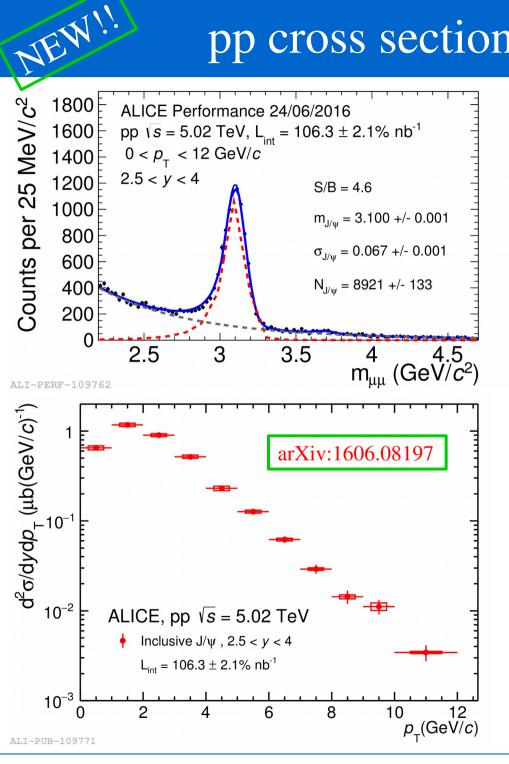
•
$$2.5 < y_{\mu\mu} < 4$$



- \rightarrow The statistics is now ~ 7 times higher w.r.t. Run-1.
- \rightarrow J/ ψ yield extracted fitting the opposite sign dimuon invariant mass spectrum.
- Signal is extracted with a extended Crystal Ball function or a pseudo-Gaussian function

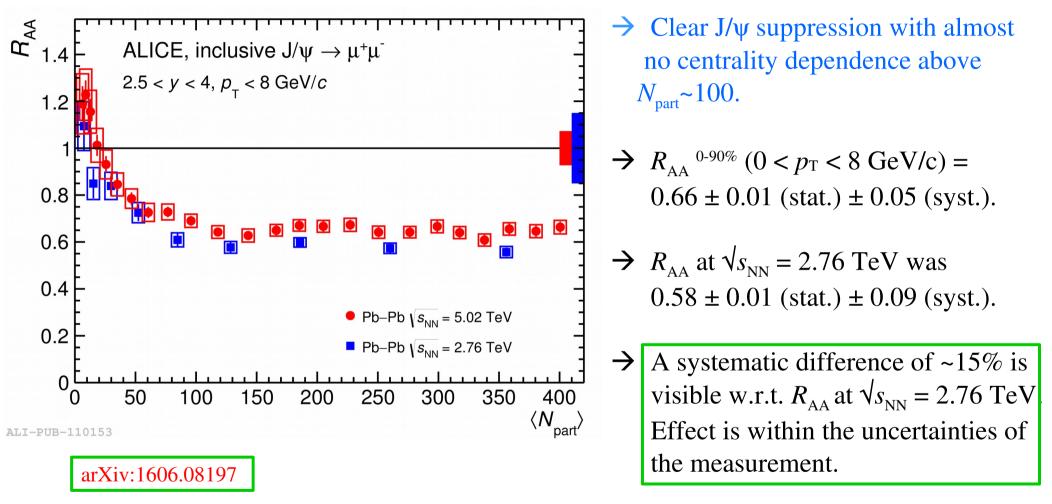
Background: phenomenological fits of the inv. mass spectrum or subtraction of the background evaluated from event mixing


→ Results obtained with different techniques are combined to extract $\langle N_{J/\psi} \rangle$ and to evaluate systematic uncertainties.



- \rightarrow The statistics is now ~ 7 times higher w.r.t. Run-1.
- \rightarrow J/ ψ yield extracted fitting the opposite sign dimuon invariant mass spectrum.
- Signal is extracted with a extended Crystal Ball function or a pseudo-Gaussian function
 - Background: phenomenological fits of the inv. mass spectrum or subtraction of the background evaluated from event mixing
- → Results obtained with different techniques are combined to extract $\langle N_{J/\psi} \rangle$ and to evaluate systematic uncertainties.

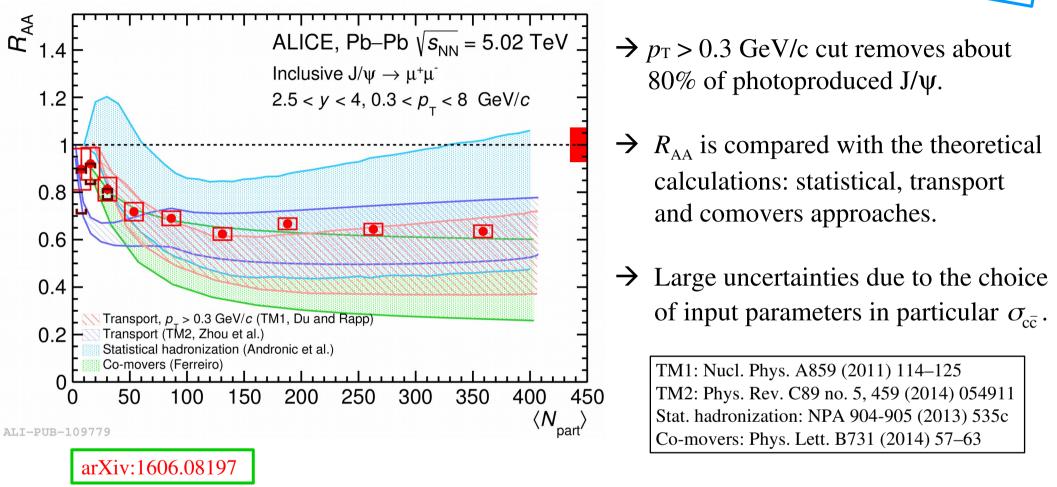
pp cross section at $\sqrt{s} = 5.02$ TeV



- → ALICE took data at $\sqrt{s} = 5.02$ TeV during 4 days in November 2015.
- → We collected a luminosity of 106.3 nb^{-1}
- → The analysis technique adopted is similar to the one of Pb-Pb collisions.
- → We use these data as reference for the $J/\psi R_{AA}$ in Pb-Pb collisions.
- > Integrated cross section ($p_T < 12 \text{ GeV/c}$): 5.61 ± 0.08 (stat.) ± 0.28 (syst.) µb.
- → The integrated and differential cross sections are in very good agreement with the interpolation values used for p-Pb results at $\sqrt{s_{NN}} = 5.02$ TeV.

Inclusive J/ ψR_{AA} vs centrality

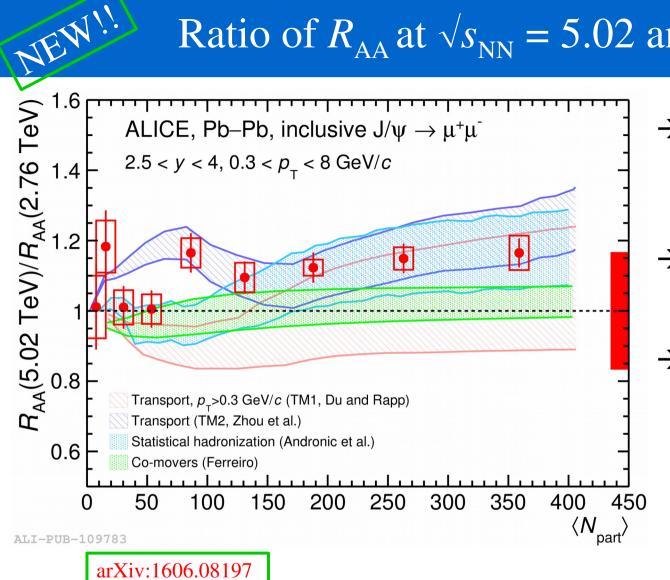
 \rightarrow High statistics collected in 2015 allows the R_{AA} measurement in narrow centrality bins.



→ The R_{AA} of prompt J/ ψ would be about 10% higher if $R_{AA(non-prompt)} = 0$ and about 5% (1%) smaller if $R_{AA(non-prompt)} = 1$ for central (peripheral) collisions.

NEW!

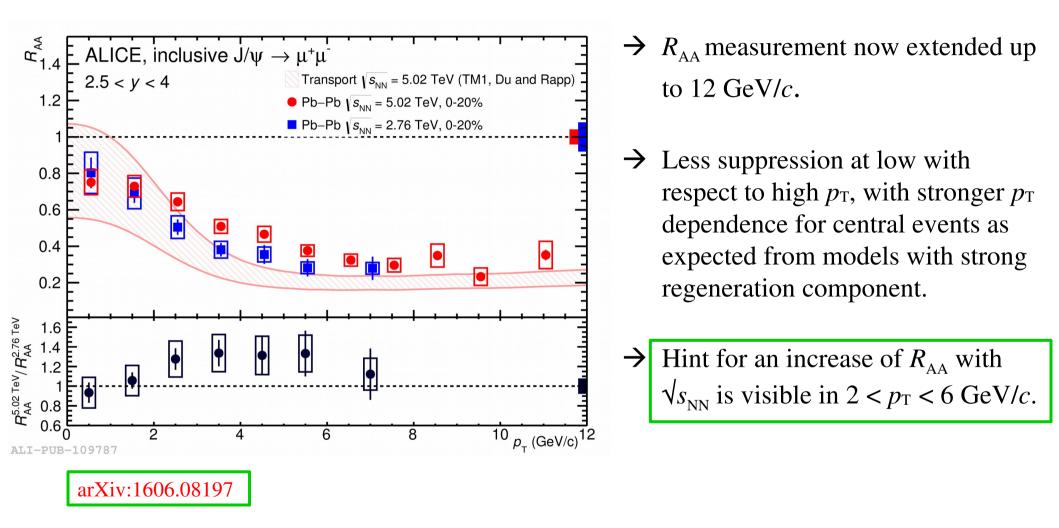
Inclusive J/ ψR_{AA} vs centrality



- → For most calculations a better agreement with the data is found when considering their upper limit.
- → For transport models this corresponds to the absence of nuclear shadowing, which can be clearly considered as an extreme assumption.

NEW!

Ratio of R_{AA} at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV



- \rightarrow By doing the double ratio, some uncertainties on the models cancel out.
- \rightarrow With the measurement, the T_{AA} uncertainty is cancelled.
- \rightarrow The error bands on the models correspond to a variation by 5% of the $c\overline{c}$ cross section.
 - \rightarrow Contribution from non-prompt J/ψ varies the double ratio by 2%.
- The double ratio for most central events is 1.17 ± 0.04 (stat.) ± 0.20 (syst.).
- Data are, within uncertainties, compatible with the theoretical models, and show no clear \rightarrow centrality dependence.

Inclusive J/ ψR_{AA} vs p_T

Conclusions

- → The J/ ψ cross section has been measured both integrated and in p_T bins in pp collisions at $\sqrt{s} = 5.02$ TeV.
- → The inclusive J/ ψ nuclear modification factor has been measured in Pb-Pb collisions at $\sqrt{s_{_{NN}}} = 5.02$ TeV at forward rapidity, down to $p_T = 0$.
- → The centrality and $p_{\rm T}$ dependence of $R_{\rm AA}$ have been studied:
 - R_{AA} shows an increase of the suppression with centrality up to $N_{part} \sim 100$ followed by a saturation.
 - The $p_{\rm T}$ dependence of $R_{\rm AA}$ exhibits an increase at low $p_{\rm T}$.
- → Comparing the R_{AA} at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV:
 - A difference by ~ 15% is observed, without a clear centrality dependence.
 - As a function of p_T , a hint for an increase of R_{AA} is visible in $2 < p_T < 6$ GeV/*c*.
- → These results are described by theoretical calculations and they support a picture of J/ψ suppression and regeneration in a QGP.

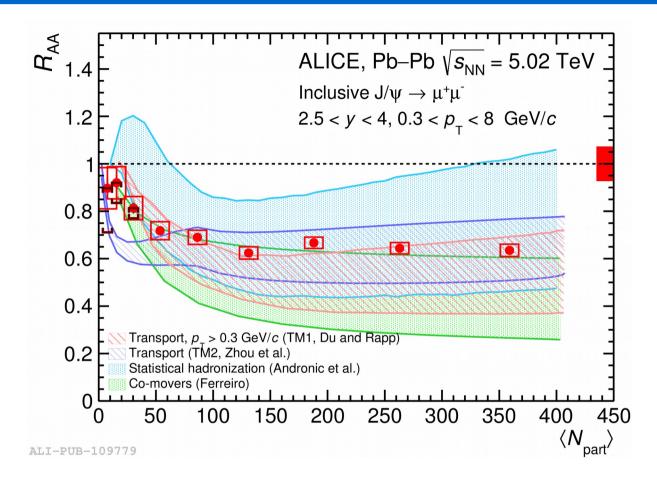
Thank you

Summary of systematic uncertainties (Pb-Pb)

Source	$0-90\%, p_{\rm T} < 12 {\rm GeV/c}$	0-20%, vs $p_{\rm T}$	Vs centrality
Signal extraction	1.8%	1.2-3.1%	1.6-2.8%
MC input	2%	2%	2%*
Tracking efficiency	3%	3%+1%	3%*+1% (central)
Trigger efficiency	3.6%	1.5-4.8%+1%	3.6%*+1% (central)
Matching efficiency	1%	1%	1%*
< <i>T</i> _{AA} >	3.2%	3.2%*	3.1-7.6%
F _{norm}	0.5%	0.5%*	0.5%*
Centrality	0%	0.1%*	0-6.6%
pp reference (stat.)	1.5%	3-20%	1.5%*
pp reference (syst.)	5.0%	3-10% + 2.1%*	4.9%*

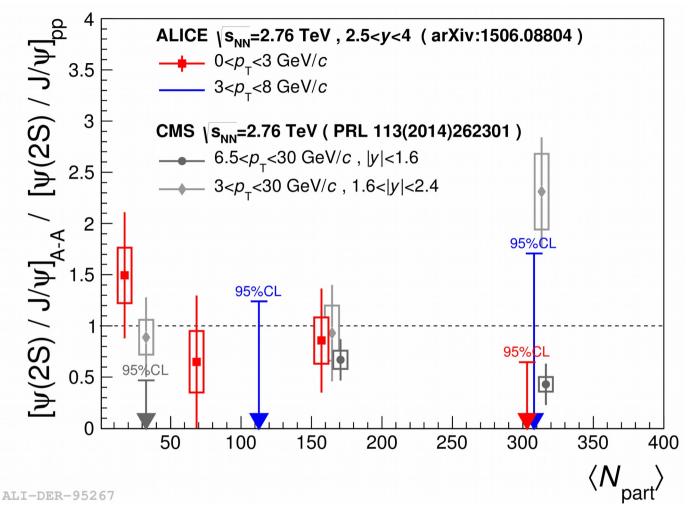
* correlated error

Summary of systematic uncertainties (pp)



Source	$0 < p_{\rm T} < 12 {\rm ~GeV/c}$	Vs p _T
Signal extraction	3%	1.5-9.3%
MC input	2%	0.7-1.5%
Tracking efficiency	1%	1%
Trigger efficiency	1.8%	1.5-1.8%
Matching efficiency	1%	1%
Luminosity	2.1%	2.1%*
BR	0.5%	0.5%*

* correlated error


Inclusive $J/\psi R_{AA}$ vs centrality

model	σ cc	N-N $\sigma_{\mathrm{J/\psi}}$	comover $\sigma_{\mathrm{J/\psi}}$	Shadowing
Transport(Rapp)	0.57 mb	3.14 µb	-	EPS09
Transport(Zhou)	0.82 mb	3.5 μb	-	EPS09
Stat. hadronization	0.45 mb	-	-	EPS09
Comovers	[0.45,0.7] mb	3.53 µb	0.65 mb	Glauber-Gribov theory

$\psi(2S)/J/\psi$ ratio

- \rightarrow Good agreement between ALICE and CMS data.
- → Large statistical and systematic uncertainties prevent a firm conclusion on the y $\psi(2S)$ trend vs centrality.

R_{AA} of prompt and non-prompt J/ ψ

- → The R_{AA} of prompt J/ ψ would be about 10% higher if $R_{AA(non-prompt)} = 0$ and about 5% (1%) smaller if $R_{AA(non-prompt)} = 1$ for central (peripheral) collisions.
- → The prompt J/ ψ R_{AA} is expected to be 7% larger (2% smaller) for $p_T < 1$ GeV/c and 30% larger (55% smaller) for 10 < $p_T < 12$ GeV/c when the beauty contribution is fully (not) suppressed.