Experimental Overview of Quarkonia

– Torsten Dahms – Excellence Cluster "Universe" - TUM

Strangeness in Quark Matter 2016 UC Berkeley June 27th, 2016

Charmonia

- Faster than linear rise of self-normalised J/ψ yield with multiplicity
 - was seen already at the LHC (open and closed HF)
 - now also at RHIC
- Sign of fundamental process, such as MPI

J/ψ in p-Pb $\sqrt{s_{NN}} = 5$ TeV

- R_{pA} at forward and backward rapidity
 - no pp data at 5 TeV at the time, reference from interpolation (updates soon?)
 - ALICE and LHCb roughly agree
 - strong suppression at forward
 - agreement with shadowing only, but also with models that include parton energy loss
 - no strong suppression/enhancement in the backward region

4

High-p_T J/ ψ in p-Pb

- No significant CNM effects at high p_T (none expected)
 - discrepancy between ATLAS and CMS at intermediate p_T (<10 GeV)?
- R_{pPb} based on interpolation with large uncertainties
 - wait for update based on pp measurement at proper energy

- Backward: suppression of ψ(2S), none for J/ψ
 - J/ ψ maybe enhanced in central p-Pb
- Forward: suppression of $\psi(2S)$ and J/ ψ almost the same
- Comover interaction model qualitatively describes patterns ALICE, arXiv:1603.02816 also see: LHCb, JHEP 03 (2016) 133

ψ(2S) in p-A from RHIC to the LHC

- Relative $\psi(2S)$ suppression observed in p-A from 200 GeV to 5 TeV
 - ► A = AI, Au, Pb
 - hints for stronger suppression at backward rapidity, comover dissociation?

High-p_T ψ(2S) in p-Pb

- At high p_T and midrapidity: hint of opposite behavior of $\psi(2S)$ to J/ ψ double ratio in peripheral p-Pb collisions
 - disappears in central collisions

J/ψ in A-A from RHIC to the LHC

- STAR: new, independent measurement at |y|<0.5 via muon channel
- Confirms existing picture:
 - Low-p_T J/ ψ at the LHC are less suppressed than at RHIC, extra source
 - High-p_T J/ ψ at the LHC are more suppressed than at RHIC, more dissociation

J/ψ in A-A from RHIC to the LHC

- First time that J/ψ are less suppressed at low p_T than high p_T
- Also visible in $r_{AA} = \langle p_T \rangle_{AA} / \langle p_T \rangle_{pp}$
- Models including regeneration component describe data well

Sequential Melting vs. Regeneration

- Always change of J/ ψ yield relative to total charm not to pp N_{part}

- Sequential Melting: naively expect plateaus and steps as $\sqrt{s_{NN}}$ increases
- Regeneration: at high enough $\sqrt{s_{NN}}$, R_{AA} should increase with centrality
 - from 2.76 TeV to 5 TeV, charm cross section expected to increase by factor 1.5
 - really need a measurement of the charm cross section in AA

- Centrality independent increase from 2.76 TeV to 5.02 TeV (<1 σ)
 - present also in peripheral collision: LHCb?
- No change at low p_T (phase space? dN/dp_T peaks around 1–2 GeV)
- Increase for p_T>2 GeV, recombination + radial flow effects?
- Extends to $p_T \sim 6$ GeV: ATLAS, CMS...?
- Do we need an FCC to see/rule out an increase of RAA (or y=0 at LHC)? 12

- Centrality independent increase from 2.76 TeV to 5.02 TeV (<1 σ)
 - present also in peripheral collision: LHCb?
- No change at low p_T (phase space? dN/dp_T peaks around 1–2 GeV)
- Increase for p_T>2 GeV, recombination + radial flow effects?
- Extends to p_T~6 GeV: ATLAS, CMS...?
- Do we need an FCC to see/rule out an increase of RAA (or y=0 at LHC)? 12

Low-p_T J/ ψ in Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV

- LHCb measured inclusive J/ψ with p_T>0 in two centrality bins:
 - ▶ 70–90%
 - ▶ 50-70%
- R_{CP} = ?
 - uncharted territory for the VELO
 - need to understand (strong) centrality dependence of efficiency

$\psi(2S)$ in Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

- Puzzling results from CMS
 - high p_T and midrapidity: as expected
 - more forward rapidity and p_T>3 GeV: hint of relative enhancement
 - Data not precise enough to conclude yet
- ALICE data not precise enough either to confirm or rule out
- What will happen at 5 TeV?
- Regeneration in hadronic phase would favor ψ(2S):
 - PBM and K. Redlich, EPJ C16 (2000) 519
 - Xiaojian Du and R. Rapp, NPA 943 (2015) 147

CMS, PRL 113 (2014) 262301 ALICE, arXiv:1506.08804

$\psi(2S)$ in Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

- Puzzling results from CMS
 - high p_T and midrapidity: as expected
 - more forward rapidity and p_T>3 GeV: hint of relative enhancement
 - Data not precise enough to conclude yet
- ALICE data not precise enough either to confirm or rule out
- What will happen at 5 TeV?
- Regeneration in hadronic phase would favor ψ(2S):
 - PBM and K. Redlich, EPJ C16 (2000) 519
 - Xiaojian Du and R. Rapp, NPA 943 (2015) 147

CMS, PRL 113 (2014) 262301 ALICE, arXiv:1506.08804 Bottomonia

Y yield & polarization vs multiplicity

- No significant change of Y polarization with multiplicity
 - no change of production mechanism at high p_T
 - but multiplicity dependence was measured at low pT

CMS HIN-15-003 (arXiv:1603.02913) CMS 4.9 fb⁻¹ (7 TeV) 0.5 λ_ϑ 0 10-15 GeV -0.5 • 15-35 GeV 0.4 HX frame 0.2 λ_{ϕ} Ω -0.2 Y(1S) Y(2S) Y(3S) -0.4 0.4 0.2 $\lambda_{\vartheta\phi}$ -0.1 Global unc., 10-15 GeV Global unc., 15-35 GeV -0.4 $\widetilde{\lambda}$ 0.5 -0.5 10 20 30 40 50 10 20 30 40 50 20 30 40 0 10 50 **N**_{ch} N_{ch} N_{ch}

• Yield vs N_{ch} at high p_T ?

Y in p-Pb

- Observed suppressions consistent with shadowing
- LHCb and ALICE results seem to give different message but agree within uncertainties

Y(nS)/Y(1S) vs. "event activity"

Measure event activity at

- Forward rapidity (4< $|\eta_{lab}|$ <5.2)
 - ▶ $\sum E_T$ in Hadronic Forward Calorimeter
 - weak dependence
 - independent sets consistent with flat

Single Ratios corrected for acceptance and efficiency

Y(nS)/Y(1S) vs. "event activity"

Single Ratios corrected for acceptance and efficiency

Measure event activity at

- Forward rapidity (4<|η_{lab}|<5.2)
 - $\sum E_T$ in Hadronic Forward Calorimeter
 - weak dependence
 - independent sets consistent with flat
- Midrapidity (|η_{lab}|<2.4))
 - Ntracks: multiplicity in silicon tracker
 - significant decrease with multiplicity
- Two options to explain results at midrapidity:

Y affects multiplicity

- ground states comes with 2 tracks more than excited state
- multiplicity affects Y
 - activity around the Y breaks the state (comovers?)
- Consequences for PbPb?!

Y(nS)/Y(1S) Double Ratio in p-Pb

CMS, JHEP 04 (2014) 103

- Pb-Pb: PRL 109 (2012)
 - ▶ slightly different rapidity (|y_{CM}|<2.4)
 - 2011 pp dataset

Double ratios in p-Pb larger than in Pb-Pb

- suggests further final state effects in Pb-Pb
- but: model dependent extrapolation from pPb to PbPb
- p-Pb vs pp:
 - double ratio less than unity (significance <3σ)
 - if multiplicity integrated double ratio indeed less unity: it's not the Y that affects the multiplicity → comovers?

Y(nS)/Y(1S) Single Ratios

CMS, JHEP 04 (2014) 103 LHCb, JHEP 07 (2014) 094

SHM prediction: $\Upsilon(2S)/\Upsilon(1S) = 0.032$ Andronic, NPA 931 (2014) 135)

- CMS:
 - midrapidity: slightly smaller values in pPb than pp (|y|<1.93)
- LHCb:
 - backward rapidity: Y(2S) consistent with pp (-5<y<-2.5)
 - forward rapidity: Y(2S) large uncertainties but slightly lower than pp (1.5<y<4)
 - Y(3S): too large uncertainties to discriminate
- STAR
 - excited states accessible in muon channel
 - hint of less suppression of excited states, consistent with Y(1S) R_{AA}

Y(nS)/Y(1S) Single Ratios

CMS, JHEP 04 (2014) 103 LHCb, JHEP 07 (2014) 094

SHM prediction: $\Upsilon(2S)/\Upsilon(1S) = 0.032$ Andronic, NPA 931 (2014) 135)

- CMS:
 - midrapidity: slightly smaller values in pPb than pp (|y|<1.93)
- LHCb:
 - backward rapidity: Y(2S) consistent with pp (-5<y<-2.5)
 - forward rapidity: Y(2S) large uncertainties but slightly lower than pp (1.5<y<4)
 - Y(3S): too large uncertainties to discriminate
- STAR
 - excited states accessible in muon channel
 - hint of less suppression of excited states, consistent with Y(1S) R_{AA}

Y(1S) in Pb-Pb $\sqrt{S_{NN}} = 2.76 \text{ TeV}$

- At the LHC, Y(1S) already suppressed in semi-peripheral collisions
 - at RHIC only in central collisions
- Y(1S) suppression in most central collisions might be larger than just lack of feed-down
 - feed-down fraction 30–40% but large uncertainties
- More suppression at forward than at midrapidity
 - beware of uncertainties
 - same story as charmonia at RHIC?
 - recombination also for bottomonia
 - ~2 bb pairs per event but 10x smaller closed/open ratio than charm

22

$\Upsilon(1S)$ in Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV

- ALICE finds similar suppression to the one at 2.76 TeV
- Increase less than 0.5σ
 - centrality integrated: 1.3±0.2±0.2
- Yet, so far quarkonia R_{AA} went only up with √s_{NN}
 - excited states? CMS...?
- Need feed-down measurements!
 - split "opinions" on signs of direct Y(1S) suppression

$\Upsilon(1S)$ in Pb-Pb $\sqrt{s_{NN}} = 5.02$ TeV

- ALICE finds similar suppression to the one at 2.76 TeV
- Increase less than 0.5σ
 - centrality integrated: 1.3±0.2±0.2
- Yet, so far quarkonia R_{AA} went only up with √s_{NN}
 - excited states? CMS...?
- Need feed-down measurements!
 - split "opinions" on signs of direct Y(1S) suppression

Fixed Target Experiments at the LHC

- Using SMOG to inject nobel gas
 - He, Ne, Ar
- Moves LHCb detector to "midrapidity" in center of mass

► ∆y = 4.5

• Moves LHC to RHIC energy domain: $\sqrt{s_{NN}} = 87 \text{ GeV}$

Summary

p-A:

• quarkonium data point towards some kind of comover effects

A-A:

- some form of regeneration seems to be present for J/ ψ (unless charm cross section scales faster then N_{coll})
- precise measurements of excited states crucial to kill models
- Y(1S) looks more and more like the new J/ψ
 - with all its problems (competing hot and cold processes)

SMOG:

 turns LHCb into a fixed-target experiments at back-/midrapidity with p-gas and Pb-gas collisions in RHIC energy range

Quarkonium Talks at SQM

• ALICE

- Javier Castillo, Mon at 9h
- Hugo Pereira Da Costa, Tue at 16h
- Biswarup Paul, Tue at 17h
- Orlando Baillie, Thu at 11h
- Antoine Lardeux, Thu at 11h20
- ATLAS
 - Qipeng Hu, Mon at 10h
 - William Brooks, Thu at 12h20
- CMS
 - Wei Xie, Mon at 9h30
 - Songkyo Lee, Tue at 16h40
 - Chad Steven Flores, Thu at 11h40

- LHCb
 - Michael Schmelling, Mon at 12h
- PHENIX
 - ▶ Rachid Nouicer, Mon at 11h30
- STAR
 - Zhenyu Ye, Mon at 11h
 - Wangmei Zha, Tue at 16h20
 - Takahito Todorok, Tue at 17h40
- The full HF summary:
 - ▶ Rongrong Ma, Fri at 14h

Backup

ALICE: ψ(2S) in p-Pb

р

Pb

High-p_T ψ(2S) in p-Pb

High-p_T ψ(2S) in p-Pb

30

Open vs. Hidden HF in AA

- A brief reminder: Sequential melting a la Satz:
 - Iess closed than open HF
 - not: less closed HF in AA than in pp
- At RHIC: open charm scales with N_{coll} \rightarrow R_{AA}(J/ ψ) = J/ ψ / D in PbPb
 - ignoring the large uncertainties on open charm

Open vs. Hidden HF in AA: high pT

- But how to compare open and closed HF with p_T cuts?
 - ▶ not trivial to select kinematic region of interest: same quark p_T, same hadron p_T,...?
- Similar suppression for "high-p_T" D and J/ ψ (energy loss rather than screening?)

Y(nS) in Ph-Ph

Low-p_T J/ ψ in Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

LHCb: Prospects with SMOG

Y. Zhang, Moriond (QCD) 2016

- System for Monitoring the Overlap with Gas
- Injection of noble gas in interaction region
- Provides Pb-gas and p-gas collisions with $\sqrt{s_{NN}}$ in RHIC energy regime